Главная
Популярное
Как лазер освоил профессию сварщика
Как «пассивный дом» обходится без отопления
Что такое маркировка продукции
В чем значение насосов для промышленности, в каких отраслях какие насосы обычно используют
Как использовать солнечную энергию для теплоснабжения индивидуальных домов
Как получают искусственные алмазы
Почему энергосбережение важно для промышленности
Различные виды металлообрабатывающих станков и преимущества
Энергия ветра - неисчерпаемый источник
Для чего нужны биотехнологии в молочной промышленности?
Трубопроводная арматура
Разделы
Водоснабжение
Энергоучет
Управление энергией
Теплоизоляция и экономия энергии
Энергетические ресурсы
Энергопотребление
Твердое топливо
Энергоэффективность
История
Выпрямление синусоидальных токов
|
На главную Энергоучет Безреагентное дефторирование подземных вод с помощью фильтрующей среды КДМ Водоснабжение
Существующие методы дефторирования воды условно разделяют на две группы (Фрог Б. Н., Левченко А. П. Водоподготовка. МГУ, 199 :
Методы сорбции фтора осадком гидроксида алюминия или магния, и фосфата кальция. Эти методы обычно используют с одновременным обесцвечиванием и осветлением для обработки поверхностных вод или одновременно с реагентным умягчением для обработки подземных вод.
Методы фильтрования воды через фторселективные материалы, основанные на обменной адсорбции фторидионов. Эти методы наиболее целесообразны при дефторировании подземных вод, где уровень растворенного кислорода низкий и нет необходимости в осветлении. В качестве фторселективных сорбентов используют сильноосновные катиониты и аниониты, магнезиальные сорбенты, фосфат кальция, модифицированные загрузки – активированные угли, активированный оксид алюминия, алюмомодифицированные клиноптилолиты, и отожженная костная мука.
Для восстановления сорбционнообменных свойств после насыщения фторидионами фторселективные материалы периодически регенерируют посредством химической обработки.
В последнее время широкое распространение получил метод дефторирования с помощью обратного осмоса, основанный на применении полупроницаемых мембран.
Без применения химических реагентов в практике промышленной очистки воды используется метод злектрокоагуляции, основанный на получении высокоактивного гидроксида алюминия путем электролитического растворения анодов из алюминия и его сплавов.
Описанные выше методы по сложности эксплуатации, высокой стоимости и энергозатратам ограничивают широкое их применение.
КДМ был задуман как корректирующая рН, каталитически активная добавка для фильтровобезжелезивателей с целью увеличения скорости окисления растворенного железа, марганца и ионов тяжелых металлов.
КДМ представляет собой гранулированный коррозионнонеустойчивый сплав системы алюминиймагний, покрытый пористой оболочкой из оксидов магния и меди. Сильный подщелачивающий эффект (рН > 9, на поверхности и в приграничном слое гранул способствует образованию малорастворимого осадка в результате реакции окисления и гидролиза ионов металла. Предполагалось, что свежеобразованный гидроксид магния при таких значениях рН должен сорбировать фторидион достаточно быстро.
Первоначально были проведены лабораторные испытания на модельном растворе фторида натрия с концентрацией фтора 3,8 мг на литр водопроводной воды. Нижняя часть колонки сечением 16 см2 была заполнена стекловолокном (высота слоя 30 мм). В качестве загрузки использовали КДМ зернистостью 0,8–1,2 мм, объем загрузки выбран из расчета времени контакта 1 мин. и составил 185 см Предварительно колонку промыли 5 л водопроводной воды. Модельный раствор пропускали через колонку сверху вниз с объемной скоростью 0,21 л/мин. На анализ были отобраны две пробы фильтрата, полученного при двух разных временах контакта. Полученные результаты представлены на рисунке (кривая .
Для испытаний КДМ на подземных водах были выбраны три объекта с повышенным содержанием фтора (таблица). С целью предотвращения спекания гранул м. собой и повышения эфф. работы гранул КДМ экспериментально была подобрана смесь КДМ фракции 1,2–4 мм с кварцевым песком фракции 0,5–1,0 мм в соотношении 1:1 и 1:1, Смесь засыпалась в пластиковые баллоны, промывка производилась с помощью трехциклового автоматического блока управления по сигналу таймера. Частота и продолжительность промывок устанавливались в соответствии с анализом на содержание в воде растворенного железа. В качестве осадочного фильтра использовался фильтр с активированным углем марки 207С. Угольный фильтр был выбран по причине возможной сорбции органического фтора, содержание которого в подземных водах может составлять до 30 %. На одном из объектов в качестве осадочного фильтра был опробован фильтр с сорбентом ОДМ2М.
Расчет времени контакта производился из общего объема смеси КДМ с песком и производительности фильтра. Это объясняется образованием чрезвычайно легкого взвешенного слоя гидроксида магния, который равномерно распределяется в слое песка в результате перемешивания обратным током воды.
Как видно из результатов лабораторных и натурных испытаний (рисунок, кривые 1, 2, , КДМ эффективно снижает содержание фторидионов в подземных водах без использования какихлибо реагентов. Химизм цикла дефторирования на КДМзагрузке, по всей видимости, аналогичен взаимодействию свежеобразованных гидроксидов магния и алюминия с фторидионами в реагентных методах с образованием труднорастворимых алюмо и магниефторидных комплексов.
Ресурс дефторирующих фильтров на основе КДМ можно спрогнозировать из практики применения КДМ в безреагентных фильтрахобезжелезивателях. Фильтры с загрузкой КДМ для удаления растворенного железа работают и наблюдаются уже в течение 2 лет. Поскольку для дефторирования требуются большие количества КДМ, чем для обезжелезивания, то можно ожидать, что ресурс дефторирующих фильтров на основе КДМ может составить срок не менее 3 лет.
Энергосбережение в дорожном хозяйстве и программа его осуществления Энергосбережение. Пластмассовые трубы в России Сантехника. Модернизация городских тепловых пунктов Теплоснабжение. Термостаты в российских системах отопления Отопление и горячее водоснабжение. На главную Энергоучет 0.0028 |
|