Промышленная резка бетона: rezkabetona.su
На главную  Энергоучет 

Тепловая изоляция трубопроводов тепловых сетей Теплоизоляционные материалы

Наиболее экономичным видом прокладки теплопроводов тепловых сетей является надземная прокладка. но с учетом архитектурнопланировочных требований, требований экологии в населенных пунктах основным видом прокладки является подземная прокладка в проходных, полупроходных и непроходных каналах. Бесканальные теплопроводы, являясь более экономичными в сравнении с канальной прокладкой по капитальным затратам на их сооружение, применяются в тех случаях, когда они по теплотехнической эфф. и долговечности не уступают теплопроводам в непроходных каналах.

 

Проектирование тепловых сетей всех способов прокладки осуществляется в соответствии с требованиями СНиП 2.04.0786* «Тепловые сети». Требования к конструкциям тепловой изоляции и нормы плотности теплового потока от теплоизолированных трубопроводов в зависимости от диаметра трубопровода, температуры теплоносителя и вида прокладки (надземная или подземная) регламентируются СНиП 2.04.1488 «Тепловая изоляция оборудования и трубопроводов» с изменением № 1.

 

Тепловая изоляция предусматривается для линейных участков трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб для надземной, подземной канальной и бесканальной прокладки.

 

При выборе материалов теплоизоляционных конструкций трубопроводов, прокладываемых в жилых, общественных и производственных зданиях и проходных тоннелях, следует учитывать требования норм проектирования на эти объекты в части пожарной опасности.

 

Условный проход трубопровода, мм

 

Средняя плотность r, кг/м3

 

Теплопроводность сухого материала l, Вт/(м °С)

 

Максимальная температура применения, °С

 

Предел прочности при сжатии, МПа

 

Для изоляции арматуры, сальниковых компенсаторов и фланцевых соединений следует применять преимущественно съемные теплоизоляционные конструкции.

 

В качестве теплоизоляционного слоя в этих конструкциях наибольшее применение в практике находят теплоизоляционные изделия на основе минерального и стеклянного волокна, выпускаемые различными предприятиями по ГОСТ 2188094, ГОСТ 957396, ГОСТ 1049995 и Техническим условиям (ТУ) производителей.

 

Эффективными теплоизоляционными изделиями для прокладываемых в каналах трубопроводов тепловых сетей являются цилиндры из минеральной ваты и стекловолокна. Российскими производителями этой продукции являются

 

ЗАО «Минеральная вата» и Назаровский ЗТИ. Импортная продукция представлена цилиндрами фирм Rockwool, «ФлайдерерЧудово», «Парок», «Изовер». Преимуществом этих продуктов является их формостабильность и технологичность при монтаже. Применение формостабильных теплоизоляционных продуктов обеспечивает снижение трудозатрат при монтаже теплоизоляции тепловых сетей в каналах.

 

В конструкциях теплоизоляции подземных трубопроводов канальной прокладки с учетом возможного попадания в конструкцию капельной влаги рек. применять только гидрофобизированные теплоизоляционные материалы. Для ограничения увлажнения волокнистой теплоизоляции при надземной и подземной канальной прокладке по теплоизоляционному слою устанавливается защитное покрытие из гидроизоляционных материалов. В отечественной практике в конструкциях с минераловатными и стекловатными утеплителями при прокладке в каналах используются стеклопластики по ТУ 6488792, ТУ 36.16.226895, ТУ 648002049611490, изол, гидроизол, полимерные пленки и штукатурные покрытия. При надземной прокладке применяются преимущественно металлические покрытия из оцинкованной стали и алюминиевых сплавов.

 

Перспективным теплоизоляционным материалом для трубопроводов тепловых сетей с температурным графиком 95–70°C в проходных и непроходных каналах и систем горячего водоснабжения, прокладываемых в технических подпольях и подвалах зданий, является вспененный каучук, производимый фирмой L'Isolante KFlex под фирменной маркой КFlex. Изделия КFlex марки ЕС и ST имеют предельную температуру применения 116°C, а при испытаниях на горючесть по ГОСТ 30244 относятся к группе Г Следует отметить, что эти изделия имеют разрешение № РРС 045986 Госгортехнадзора России на их использование на объектах, подконтрольных этому ведомству.

 

Для трубопроводов тепловых сетей подземной бесканальной прокладки применяются преимущественно предварительно изолированные в заводских условиях трубы с гидроизоляционным покрытием, исключающим принцип. возможность увлажнения изоляции в цикле эксплуатации.

 

В качестве основного теплоизоляционного слоя в конструкциях теплоизолированных трубопроводов бесканальной прокладки по СНиП 2.04.0786* и СНиП 2.04.1488 рек. применять армопенобетон (АПБ), пенополимерминерал (полимербетон) и пенополиуретан (ППУ).

 

Применявшиеся ранее конструкции на основе битумоперлита, битумовермикулита, битумокерамзита, фенольных пенопластов (ФРП1, ФЛ) по физикотехническим и эксплуатационным характеристикам уже не отвечают современным требованиям, в частности, нормам плотности теплового потока по изменению № 1 к СНиП 2.04.148 Эти материалы могут использоваться при соответствующем техникоэкономическом обосновании в условиях, когда отсутствуют указанные выше, эффективные теплоизоляционные материалы.

 

Трубы с армопенобетонной изоляцией диаметром от 57 до 1 420 мм выпускаются ЗАО «Изоляционный завод» (СанктПетербург) по ТУ 4859002039841559 Современный армопенобетон характеризуется низкой плотностью (200–250 кг/м3) и теплопроводностью (0,05 Вт/(м•К)) при высокой прочности на сжатие (не менее 0,7 МПа). К преимуществам АПБ относятся его негорючесть, высокая температура применения (до 300°C), отсутствие коррозионного воздействия на стальные трубы, паропроницаемость гидрозащитного покрытия и, как следствие, долговечность. По данным ЗАО «Изоляционный завод» (СанктПетербург), более 1 000 км труб с изоляцией из армопенобетона, изготовленных на этом предприятии, находятся в эксплуатации уже более 25 лет. Предызолированные трубы с изоляцией из армопенобетона могут применяться во всем диапазоне температур теплоносителя как в водяных, так и в паровых тепловых сетях всех видов прокладки, включая подземную бесканальную, подземную в проходных и непроходных каналах и надземную прокладку.

 

Предварительно изолированные в заводских условиях трубы с тепловой изоляцией на основе ППУ и защитным покрытием из полиэтилена высокой плотности по ГОСТ 307322001 применяются для тепловых сетей подземной бесканальной прокладки с температурой теплоносителя до 130°C. Теплопроводы оборудованы системой оперативного дистанционного контроля технического состояния теплоизоляции, позволяющей своевременно обнаруживать и устранять возникающие дефекты.

 

К преимуществам теплопроводов с ППУизоляцией относят низкий k теплопроводности ППУ (0,032–0,035 Вт/(м•К)), технологичность при изготовлении и при монтаже теплопроводов, долговечность при соблюдении требований монтажа и эксплуатации.

 

Ограничения в применении ППУизоляции в тепловых сетях определяются допустимой температурой применения (130°C), горючестью, высокой дымообразующей способностью и токсичностью выделяемых при горении компонентов.

 

Предельная максимальная температура применения 130°C не позволяет использовать ППУ для изоляции трубопроводов водяных тепловых сетей, работающих по температурным графикам 150–70 и 180–70°C и паропроводов. Следует отметить, что ГОСТ 307322001 допускает применение ППУ при кратковременном повышении температуры до 150°C.

 

Пенополиуретан при испытаниях по ГОСТ 30244, в зависимости от рецептуры, относится к группам Г3 и Г4, что ограничивает принцип. возможность его применения для тепловой изоляции трубопроводов тепловых сетей, надземной прокладки и подземной в проходных и непроходных каналах и тоннелях.

 

Пенополимерминерал (полимербетон) разработан Институтом ВНИПИЭнергопром и более 20 лет применяется в конструкциях тепловой изоляции трубопроводов диаметром до 500 мм, изготавливаемых по ТУ 576800600113537200 Характеризуется интегральной структурой, совмещающей функции теплоизоляционного слоя и гидроизоляционного покрытия. Имеет температуру применения до 150°C, при испытаниях на горючесть по ГОСТ 30244 относится к группе Г1.

 

В соответствии с требованиями СНиП 2.04.1488 теплоизоляционные материалы, применяемые для тепловой изоляции трубопроводов бесканальной прокладки, должны иметь прочность на сжатие не менее 0,4 МПа.

 

Технические характеристики материалов, рекомендуемых к применению в качестве теплоизоляционного слоя в конструкциях тепловой изоляции трубопроводов бесканальной прокладки, приведены в табл.

 

При бесканальной прокладке трубопроводов расчетный k теплопроводности основного теплоизоляционного слоя в конструкции lk определяется с учетом возможного увлажнения при эксплуатации. Коэффициент, учитывающий увеличение теплопроводности теплоизоляционного материала при увлажнении, в настоящее время принимается по СНиП 2.04.1488 и в зависимости от вида теплоизоляционного материала и влажности грунта по ГОСТ 25100 имеет значения в пределах 1,0–1,1 Следует отметить, что значения этих коэффициентов подлежат уточнению с учетом эфф. применяемых в современной практике гидроизоляционных покрытий. Так, для труб с ППУизоляцией в оболочке из полиэтилена высокой плотности и системой контроля влажности этот k может быть принят равным 1 независимо от влажности грунта. Для труб с армопенобетонной изоляцией и паропроницаемым гидроизоляционным покрытием и труб с пенополимерминеральной изоляцией с интегральной структурой, допускающих принцип. возможность высыхания теплоизоляционного слоя в цикле эксплуатации, k увлажнения, вероятно, может быть снижен до значений 1,05 в маловлажных и влажных грунтах и 1,1 в насыщенных водой грунтах по ГОСТ 25100.

 

При бесканальной прокладке трубопроводов тепловых сетей не рек. применение теплоизоляционных конструкций на основе штучных теплоизоляционных продуктов с устройством гидроизоляционного покрытия на месте монтажа для линейных участков трубопроводов.

 

Практические расчеты тепловой изоляции трубопроводов в канале и при бесканальной прокладке выполняются с удовлетворительной для практики точностью по инженерным методикам, учитывающим термическое сопротивление теплоизоляционного слоя и термическое сопротивление стенок канала и грунта, сопротивление теплоотдаче на границе теплоизоляции и стенок канала с воздухом в канале. Термическое сопротивление грунта рассчитывается по формуле Форхгеймера, учитывающей теплопроводность грунта в условиях эксплуатации, диаметр теплопровода и глубину его заложения. При двухтрубной прокладке учитывается взаимное тепловое влияние подающего и обратного теплопровода. В практике проектирования тепловых сетей при двухтрубной прокладке трубопроводов одного диаметра толщина теплоизоляционного слоя обратного трубопровода с учетом монтажных требований принимается равной толщине теплоизоляции подающего трубопровода.

 

Экономически оптимальная толщина теплоизоляционного слоя для заданного типа прокладки определяется по минимуму суммы капитальных затрат на устройство изоляции и эксплуатационных расходов с учетом стоимости используемых материалов и тепловой энергии в конкретном регионе. Стоимостные показатели рекомендуемых к применению теплоизоляционных материалов являются одним из определяющих факторов при оценке их сравнительной техникоэкономической эффективности.

 

Для проведения расчетов экономически оптимальных толщин теплоизоляционного слоя и норм плотности теплового потока Институтом Теплопроект разработана компъютерная программа на базе программного пакета Excel c использованием элементов языка программирования Visual Basic. На в качестве примера приведены результаты расчета оптимальной толщины теплоизоляционного слоя и оптимальной плотности теплового потока при двухтрубной бесканальной прокладке трубопроводов диаметром 159 мм.

 

В связи с изменяющейся конъюнктурой цен на тепловую энергию и теплоизоляционные материалы и значительной их дифференциацией по регионам РФ действующие нормы тепловых потерь по изменению № 1 к СНиП 2.04.1488 для изолированных трубопроводов и оборудования в настоящее время уже не являются экономически оптимальными и подлежат пересмотру. Программа расчета в настоящее время используется при переработке СНиП 2.04.1488 для определения норм плотности теплового потока с учетом современной номенклатуры и стоимости теплоизоляционных материалов и продуктов. Следует отметить, что в 2002 году Институт ВНИПИЭнергопром при участии Института Теплопроект перерабатывает и СНиП 2.04.0786 «Тепловые сети».

 

Введение в действие новых нормативных документов поможет проектным и монтажным организациям, и потребителям квалифицированно использовать теплоизоляционные материалы в теплоизоляционных конструкциях, повысит энергоэффективность, надежность и долговечность конструкций тепловой изоляции трубопроводов тепловых сетей, что в конечном итоге обеспечит значительную экономию энергетических ресурсов и средств потребителей тепловой энергии.

 

Совершенствование нормативной базы и методов расчета тепловой изоляции трубопроводов тепловых сетей, расширение номенклатуры и повышение эксплуатационных характеристик применяемых теплоизоляционных материалов является реальным вкладом в реализацию программы энергосбережения в промышленности и ЖКХ.

 



Артезианское водоснабжение для крупных предприятий Водоснабжение. Насосы и насосные установки для высотных зданий Сантехника. Мероприятия по снижению потерь электроэнергии в электрических сетях энергоснабжающих организаций Электроснабжение. Применение стандартов информационных технологий в индустрии АСУ зданий Автоматизация и регулирование.

На главную  Энергоучет 





0.0155
 
Яндекс.Метрика