![]() | |
![]() ![]() |
На главную Энергоучет Обеспечение работоспособности систем кондиционирования воздуха при низких температурах наружного воздуха Кондиционирование воздуха
Уже на стадии проектирования системы кондиционирования воздуха ответственного объекта (командные пункты, серверные, студии звукозаписи, помещения с большим количеством людей и оборудования) можно избежать всех проблем, связанных с низкими температурами наружного воздуха. Достаточно применить для охлаждения конденсатора систему с гидравлической развязкой: дополнительный контур с незамерзающей жидкостью, наружный теплообменник типа воздух/антифриз, насосная станция и холодильная машина с конденсатором жидкостного охлаждения.
Международный опыт проектирования и эксплуатации таких систем достаточно велик, чтобы можно было гарантированно применить их для круглогодичного кондиционирования воздуха в любом суровом климате. Более того, все ведущие фирмы – производители систем кондиционирования имеют в своих производственных программах необходимое оборудование и инженерное обеспечение. но системы кондиционирования с воздушным охлаждением конденсатора много проще, дешевле и экономичнее в эксплуатации. К сожалению, круглогодичное использование их в районах с континентальным климатом, суровыми зимами затруднено рядом порой неразрешимых проблем.
Проблемы, требующие внимания
При использовании системы кондиционирования воздуха в режиме отопления, кроме указанных проблем, прежде всего, следует рассмотреть экономический аспект, целесообразность использования кондиционера в этом режиме, и проблему оттаивания наружного теплообменника.
Основная проблема при эксплуатации кондиционера в режиме охлаждения
В таблице приведены значения абсолютного давления насыщенных паров хладона R22 [1]. Аналогичные зависимости характерны для всех хладагентов.
Давление конденсации зависит от множественных факторов:
– количества и температуры паров хладагента, поступающих в конденсатор из компрессора;
– размеров, конструкции и состояния поверхности конденсатора, степени его заполнения жидким хладагентом, наличия в конденсаторе неконденсируемых газов;
– параметров наружного воздуха, скорости и направления ветра, наличия атмосферных осадков;
– интенсивности работы вентилятора конденсатора, скорости движения воздуха.
Температура конденсации хладагента выше температуры наружного воздуха. При высоких температурах наружного воздуха давление конденсации высоко и чем выше оно, тем менее экономичен цикл кондиционирования.
Труднейшая задача создания кондиционеров, способных работать в районах с жарким климатом при температурах наружного воздуха свыше 40 °С, была успешно решена применением высокоэффективных конденсаторов и вентиляторов. Разность м. температурой наружного воздуха и температурой конденсации доведена до экономически обоснованного минимума. Именно такие кондиционеры применяем и мы – как на юге страны, так и в районах с суровыми зимами.
но при отрицательных температурах наружного воздуха давление конденсации становится ниже давления кипения и нормальный цикл циркуляции хладагента нарушается. фирмыизготовители указывают предельно допустимую температуру наружного воздуха –5 °С.
Самые последние разработки фирм – изготовителей кондиционеров для стран с холодным климатом позволили расширить температурный диапазон работы в режиме охлаждения до –15 °С [2, 3]. Это удалось сделать за счет применения компрессоров с плавным регулированием производительности (инверторный привод) и многоскоростных вентиляторов конденсатора. К сожалению, нам требуются более «морозоустойчивые» кондиционеры.
Способы регулирования давления конденсации
Управление частотой вращения вентилятора осуществляют с помощью специальных контроллеров, которые преобразуют показания датчика давления конденсации в сигнал управления. Поскольку давление конденсации связано с температурой конденсации, то датчиком может служить и температурный датчик. Правда, возникают трудности выбора места для его размещения. Рекомендации по установке датчиков и контроллера приводятся в соответствующих инструкциях. Способ широко применяется на практике.
Изменение степени заполнения конденсатора жидким хладагентом [8–10].
При снижении давления конденсации ниже установленного значения регулятор давления ограничивает поступление жидкого хладагента из конденсатора в испаритель, в результате чего конденсатор постепенно заполняется жидким хладагентом и часть теплообменной поверхности исключается из цикла теплопередачи.
При высоком давлении конденсации регулятор полностью открыт, практически весь запас жидкого хладагента размещается в ресивере. весьма важно правильно рассчитать требуемое количество хладагента, достаточное и безопасное для работы холодильной машины в летнее и в зимнее время.
Для реализации способа ведущие фирмыпроизводители разработали приборы автоматики и инструкции по применению, способ успешно используется в торговохолодильном оборудовании, но в бытовых кондиционерах пока не получил широкого применения.
Изменение степени заполнения конденсатора неконденсируемыми газами [11].
Один из способов регулирования давления в конденсаторе заключается в принудительном вводе в конденсатор такого количества неконденсируемого газа (азота, гелия или др.), которое было бы достаточно для нормальной циркуляции жидкого хладагента. Система автоматики должна обеспечить удаление неконденсируемых газов из конденсатора в летнее время и ввод его в конденсатор при низких температурах наружного воздуха.
Наиболее распространенным способом регулирования давления конденсации в зимнее время в нашей стране в кондиционерах небольшой производительности является первый из перечисленных способов. Его реализация осуществляется с помощью электронных пропорциональных регуляторов скорости вентиляторов, которые выпускаются многими фирмами для различных применений. Это сложная современная техника, и грамотное применение ее требует профессиональных знаний и навыков. и крупные московские фирмы сами осуществляют предпродажную установку и настройку низкотемпературных комплектов.
Электронный контроллер является лишь одним элементом низкотемпературного комплекта, состав и особенности применения которого определяет фирмаразработчик.
на данный момент технология обеспечения работоспособности кондиционеров в зимних условиях является, в определенном смысле, закрытой. Фирмы не готовы раскрыть ее в деталях. И тому есть объективные первопричины. Ассортимент кондиционеров весьма разнообразен: сплиты и мультисплиты, инверторы и традиционные модели, только охлаждение и теплонасосное исполнение, различные хладагенты – одно и многокомпонентные составы, различные смазочные масла, капиллярная трубка или терморегулирующий вентиль, размеры конденсатора, параметры питающей электросети и их стабильность, компоновка и аэродинамика наружного блока, наличие вспомогательных аппаратов (ресиверы, теплообменники), типы и число вентиляторов и т. д.
Кроме того, важны условия эксплуатации, например, насколько фактическая нагрузка отличается от номинальной, как сильно влияет ветер на температурный режим наружного блока, имеются ли в конденсаторе и в каком количестве неконденсируемые газы, каково фактическое количество хладагента в системе.
И для каждой модели требуется основательная и всесторонняя проверка. Опыт показал, что далеко не все модели могут быть оснащены низкотемпературными комплектами. И не все модели, оснащенные низкотемпературным комплектом, способны надежно и экономично работать при температурах ниже –20 °С. Специалисты убедились: чем легче и бесхитростнее кондиционер, тем легче адаптировать его к зимним условиям, и наоборот, высокоинтеллектуальные системы не допускают насилия, и в русскую зиму им приходится плохо.
Холодный запуск компрессора
Как известно, многие хладагенты обладают ограниченной растворимостью в смазочных маслах в зависимости от температуры. Например, при низких температурах в маслофреоновом растворе R22 + масло ХФ–22С фаза, богатая маслом, находится вверху, а обогащенная фреоном – внизу [12]. Понятно, что в переохлажденном компрессоре смазка рабочих поверхностей неудовлетворительна.
Вторым важным обстоятельством является температурная зависимость вязкости маслофреонового раствора [12]: k кинематической вязкости 75 % раствора R22 + масло ХФ–22–24 возрастает с 6 • 10–4 м2/с при 30 °С до 28 • 10–4 м2/с при –20 °С, значит фактически в 5 раз (!). Конечно, это приводит к повышенным пусковым моментам.
Здесь уместно отметить, что инверторные компрессоры, которые пришли на смену обычным компрессорам типа вкл./выкл., обладают низким пусковым моментом. Их запуск в холодном состоянии особенно проблематичен.
К счастью, избежать холодного запуска компрессора не трудно и недорого: компрессор, закрыт теплоизолирующим кожухом и снабжен встроенным электрообогревателем картера. Если же этого нет, то установить обогреватель картера мощностью в несколько десятков ватт можно при монтаже. Бандажные электрообогреватели картера иногда снабжают термореле, иногда включают в сеть через нормально замкнутый вспомогательный контакт магнитного пускателя компрессора. Труднее оснастить компрессор бандажным обогревателем, если питание к кондиционеру подводится к внутреннему блоку: приходится прокладывать дополнительный трехжильный кабель.
Следуя инструкции, необходимо включать компрессор после длительной стоянки или при вводе в эксплуатацию не ранее, чем через 6–12 ч после подключения кондиционера к сети.
Опыт демонстрирует, что проблема запуска компрессора в зимнее время является определяющей: если компрессор запускается, то все остальные проблемы решаются сравнительно легко.
Особенности цикла дросселирования при низких температурах
Капиллярная трубка представляет собой действительно простую капиллярную трубку, внутренний диаметр и длина которой подбирается на заводе персонально для каждой модели кондиционера, причем, для высокотемпературного режима работы.
Расход хладагента через капиллярную трубку зависит от разности давлений конденсации и кипения, от температуры жидкого хладагента на входе в капиллярную трубку, от свойств хладагента. Важно помнить, что при дросселировании происходит парообразование, и относительное паросодержание в конце дросселирования зависит от температуры переохлаждения.
Обратимся к цифрам. Плотность жидкого хладагента R22 при температуре 30 °С равна 1,17 кг/л, а при –30 °С равна 1,38 кг/л; разница превышает 17 %.
Но гораздо большее значение имеет величина относительного паросодержания в конце дросселирования: оно изменяется в зависимости от температуры переохлаждения от 0,15 (температура переохлаждения 25 °С) до 0 (температура переохлаждения равна или ниже температуры кипения).
В первом случае (обычный режим) удельный объем R22 на выходе из капиллярной трубки приблизительно равен 8 л/кг, во втором случае (работа при низких температурах наружного воздуха, –30 °С) он равен только 0,72 л/кг, то есть разница в 11 раз! Пропускная способность капиллярной трубки меняется весьма сильно, и это обстоятельство отрицательно сказывается как на пуске холодильной машины, так и на ее работе.
Все сказанное относится и к терморегулирующим вентилям. Иногда ошибочно считают, что назначение терморегулирующего вентиля (ТРВ) соответствует его названию. На самом деле, назначение ТРВ заключается в регулировании заполнения испарителя жидким хладагентом по величине перегрева паров на выходе из испарителя. Пропускная способность ТРВ также зависит от температуры переохлаждения, и характеристики его работы в этих условиях резко отличаются от расчетных.
особенности цикла дросселирования переохлажденного жидкого хладагента могут негативно сказаться как на пуске, так и на работе холодильной машины. но способы борьбы с этим явлением в широкой печати не обсуждались.
Миграция хладагента внутри выключенного кондиционера
В зимнее время ситуация меняется: с остановкой компрессора хладагент продолжает кипеть в испарителе, а пары конденсируются в трубках, в аппаратах и в картере компрессора – везде, где температура ниже температуры испарителя. Трудно предсказать, где соберется основная часть хладагента – это зависит от погодных условий, места расположения и компоновки наружного блока, от множественных факторов.
Если даже компрессор включился в работу, то выход кондиционера на приемлемый режим может быть затруднен нестандартным распределением хладагента в системе.
Новые технологии
Принципиально иной подход к проблеме [13, 14] позволил разработать универсальную технологию, пригодную для любой модели компрессорноконденсаторного агрегата с воздушным охлаждением при любой температуре наружного воздуха, до –50 °С. Более того, эта технология позволяет эксплуатировать систему кондиционирования воздуха при оптимальном давлении конденсации.
Технология основана на использовании тепла конденсации для поддержания оптимальной температуры наружного воздуха, разумеется, в ближайшем окружении наружного блока. Согласно патенту, при температуре наружного воздуха ниже 5 °С регулируют температуру охлаждения конденсатора, при этом выходящий из конденсатора отработанный воздух частично или полностью перепускают на вход в конденсатор и смешивают с наружным воздухом.
Для реализации способа наружный блок помещается в контейнер специальной конструкции, которая позволяет обеспечить эффективное охлаждение конденсатора летом и термостатирование среды внутри контейнера зимой. Никакого вмешательства в конструкцию кондиционера не требуется – этим и объясняется универсальность технологии. Особенно она эффективна на крупных кондиционерах, холодопроизводительность которых превышает 10 кВт.
Контейнер оснащен жалюзи с электроприводом, которые управляются термостатом с датчиком, размещенным внутри контейнера. При положительных температурах наружного воздуха жалюзи полностью открыты, условия охлаждения конденсатора соответствуют нормативным. При снижении температуры воздуха на выходе из конденсатора ниже установленного значения электропривод прикрывает жалюзи, заставляя часть горячего воздуха, выходящего из конденсатора, поступать на вход в конденсатор и смешиваться с наружным воздухом. При отключении кондиционера жалюзи закрываются, а температура внутри контейнера поддерживается не ниже 0 °С с помощью электронагревателя.
Примером удачного использования данной технологии можно назвать систему кондиционирования воздуха серверных в административном высотном здании СИТИ 2000 в Москве с применением VRVIII RXQ10P7W1B. Наружный блок размещен на расстоянии 120 м от кондиционируемых помещений, на набережной реки. Для эксплуатационных наблюдений были применены регистраторы температуры, которые фиксировали температуры внутри и снаружи контейнера каждые 5 мин в течение пяти месяцев.
На протяжении всего периода наблюдений температура воздуха внутри контейнера поддерживалась стабильно в пределах 20–25 °С.
На 4 показана динамика температурного режима внутри контейнера при выключенной на один час системе кондиционирования: при отрицательной температуре наружного воздуха (–5 °С) температура снижалась в течение 40 мин до 4,5 °С, после чего автоматически включился воздухонагреватель, и температура вскоре стабилизировалась на прежнем уровне.
В зависимости от конкретных условий технология может применяться в различных исполнениях, учитывающих местные климатические условия, место размещения и конструкцию наружных блоков, их количество и размеры, способ регулирования («on/off» или пропорциональное регулирование).
Рекомендации по применению данной технологии, сведения о системе управления, техникоэкономические характеристики, опыт применения входят в программу мастеркласса по данной теме.
Литература
DAIKIN, technical data, EEDE061/3.
Мультизональная система кондиционирования зданий Airstage V cерии. Материалы FUJITSU GENERAL Ltd.
Технические материалы ДАИЧИ. Низкотемпературный комплект «Иней» (–3 и «Айсберг» (–4 .
Корх Л. Н. Зима. Кондиционер. Проблемы и решения // Мир климата. – № 9.
Ананьев В. Адаптация кондиционеров DELONGHI к низким температурам наружного воздуха. http://www.euroclimat.ru/ 09.06.2003.
Литвинчук Г. Г. Работа современной сплитсистемы в условиях низких температур // AВОК. – 199 – № http://www.norris.ru/nrsp/page401ptS.html.
Danfoss A/S (RCCMS/MWA), 03 – 200 KV– pressure regulators. www.danfoss.com.
Шишов В. В. Регулирование давления конденсации в холодильных машинах // Холодильная техника. – 200 – № 4.
1 Регулятор высокого давления HP HeadMaster (http://www.alcocontrols.com). Перевод технического департамента фирмы МОРЕНА. 1999: http://www.morena.com.ru/NEWS/hpmaster.shtml.
1 Шишов В. В., Ревков А. В. К вопросу об «адаптации» кондиционеров к условиям российского климата // Холодильная техника. – 199 – № 6.
1 Бадылькес И. С. Свойства холодильных агентов. ПП. – М., 1974.
1 Харитонов Б. П. Способ работы кондиционера и кондиционер. Патент RU 2185574, приоритет от 09.07.2001.
1 VRV, работаем при низких температурах // Мир климата. – № 25.
![]() ![]() ![]() ![]() На главную Энергоучет 0.0034 |
|