Главная
Популярное
Как лазер освоил профессию сварщика
Как «пассивный дом» обходится без отопления
Что такое маркировка продукции
В чем значение насосов для промышленности, в каких отраслях какие насосы обычно используют
Как использовать солнечную энергию для теплоснабжения индивидуальных домов
Как получают искусственные алмазы
Почему энергосбережение важно для промышленности
Различные виды металлообрабатывающих станков и преимущества
Энергия ветра - неисчерпаемый источник
Для чего нужны биотехнологии в молочной промышленности?
Трубопроводная арматура
Разделы
Водоснабжение
Энергоучет
Управление энергией
Теплоизоляция и экономия энергии
Энергетические ресурсы
Энергопотребление
Твердое топливо
Энергоэффективность
История
Выпрямление синусоидальных токов
|
На главную Энергоучет Отопление соборов – практика альтернативных решений Отопление и горячее водоснабжение
В ряде случаев специалисты приходят к заключению о целесообразности применения комбинированных систем отопления, включающих в себя достоинства систем лучистого и систем конвективного отопления и минимизирующих известные недостатки этих систем.
В действительности проектирование систем отопления для соборов и церквей связано с принятием множества компромиссов. В некоторых особых случаях лучше отказаться от установки современных систем отопления, если это повлечет за собой изменение архитектурного облика здания. Необходимо также помнить следующее: каждое историческое здание является уникальным объектом, и система отопления, хорошо зарекомендовавшая себя в одном здании, может оказаться неприемлемой для другого.
Системы лучистого отопления
При применении системы лучистого отопления стратификация температуры во внутреннем объеме собора не имеет места, затраты энергии на обогрев минимальны и обеспечивается максимальный акустический комфорт. Следует также помнить, что при использовании системы лучистого отопления температура внутреннего воздуха может быть понижена, и это обеспечивает более комфортные условия для прихожан.
Первая задача, которая имеет место при устройстве системы лучистого отопления с помощью низкотемпературных напольных панелей, состоит в определении участков установки напольных нагревательных панелей. Следующей задачей является проектирование системы лучистого отопления. Наибольшие сложности здесь связаны с определением толщины теплоизоляции слоев конструкции, расположенных выше и ниже нагревательных элементов. Это трехмерная задача со многими взаимозависимыми характеристиками. Успех ее решения зависит от обоснованности выбора целевой функции оптимизации. При проектировании конструкции пола определенную сложность имеет задача определения нагрузки на конструкцию пола при наибольшей заполняемости храма. В соответствии с практикой заполняемости католических храмов прихожанами реальная нагрузка на конструкции пола может достигать 500 кг на м На это значение и следует ориентироваться.
В прошлом системы лучистого отопления на основе низкотемпературных греющих панелей выполнялись из стальных труб, проложенных в конструкции пола, по которым циркулировал теплоноситель.
Типичным примером системы лучистого отопления на основе греющего пола является отопительная система собора Сан Марко в итальянском городе Порденоне [2], где в 1970х годах при реконструкции покрытия полов была произведена укладка отопительных змеевиков из высококачественной стали. Сечение греющих труб выбрали небольшого диаметра порядка 0,5 дюйма, именно из такой трубы легче делать гнутые сегменты, да и сам материал довольно легок в работе в силу своей однородности. Перед укладкой и заливкой бетонной стяжки все змеевики испытывали на герметичность под давлением до 50 бар. Кроме того, отопительная система была условно разбита на отдельные панели – участки площадью до 25 м2, м. которыми при заливке бетона по границе укладывалась деревянная рейка, которую по завершении работ вынимали. Тем же способом оставлялись зазоры м. панелями и стенами или иными конструкциями. Смысл в том, чтобы предотвратить растрескивание полов либо их деформацию, т. е. обеспечить принцип. возможность беспрепятственного температурного расширения греющих змеевиков, для чего и требуется раздельная бетонная заливка, при которой каждый из рабочих участков не соприкасается с соседними и не производит на них деформирующего воздействия. Технология, использованная в соборе Сан Марко, заслуживает самых лестных отзывов, и, по сути, она предвосхитила методику, применяемую ныне при работе с полиэтиленовыми трубами.
Фундаментальной характеристикой системы панельнолучистого отопления с помощью напольных низко и среднетемпературных панелей является устройство системы автоматического контроля и регулирования их температурного режима. Конечной задачей является обеспечение температуры поверхности пола на уровне не выше 29 °С. Эта величина температуры является функцией температуры теплоносителя в конструкции замоноличенного змеевика труб или температуры греющего электрического кабеля, расстояние м. трубами или шагом кабеля, теплозащитными показателями конструкции пола, расположенными выше и ниже греющей системы. Эти показатели рассчитываются на стадии проектирования при нормативном значении температуры поверхности пола с учетом лучистого и конвективного теплообмена поверхности пола и при заданном значении температуры наружного воздуха. Эта задача является простой по сравнению с задачей регулирования системы отопления в зависимости от эксплуатационного режима храма, т. е. задачей определения статических и динамических характеристик системы отопления здания с учетом его заполнения и внутренних тепло и влаговыделений.
По этой же причине серьезнейшим образом следует отнестись к этапу непосредственного запуска системы, главное здесь – тщательная регулировка максимальной температуры воды на входе в змеевики. При условии корректной настройки отдельных элементов система в целом будет полностью и надежно защищена от возможных ошибок терморегуляции.
И, наконец, так же один немаловажный аспект — режим эксплуатации. В этом смысле система лучистого отопления – это своего рода антитеза: с одной стороны, мы имеем максимальный комфорт без необходимости перерасхода энергии на отопление верхней зоны церкви, с другой – существенную тепловую инерцию и непринцип. возможность подавать тепло по определенному графику, например, по фактическому расписанию богослужений. весьма неплохие экономические показатели, обусловленные рационализацией распределения тепла в помещении, явно контрастируют с необходимостью непрерывной работы системы на протяжении всего отопительного сезона.
Комбинированные системы лучистого и конвективного отопления
Отопление на основе греющего пола, выгодно отличающееся характеристиками обеспечиваемого комфорта, отсутствием стратификации тепла по вертикали и ограниченной шумностью, в данном случае предназначено для постоянного поддержания в помещении церкви базовой температуры порядка 16 °С безо всяких ограничений по расписанию богослужений.
данная церковь, будучи постоянно отапливаемой в зимний период, открыта для посещения большую часть дня и обеспечивает прихожанам тепло и покой. Художественным ценностям и произведениям искусства не наносится ущерб низкой относительной влажностью воздуха. Это происходит потому, что заданная температура в обслуживаемой зоне храма, равная 16 °С, обеспечивается за счет системы лучистого отопления при расчетной температуре внутреннего воздуха 14 °С и, следовательно, относительная влажность воздуха имеет более высокое значение, чем при использовании системы конвективного отопления.
В этих условиях, несмотря на то что система работает в непрерывном режиме, эксплуатационные расходы весьма невелики, а дополнительная система конвективного отопления обеспечивает быстрый выход на заданный уровень температуры, равный 18—20 °С, в соответствии с графиком проведения богослужений. Запрограммированные в соответствующем семидневном режиме таймеры терморегуляции с программным управлением включают по расписанию вентиляторные конвекторы, которые в считанные минуты доводят температуру помещения до требуемого уровня.
Заключение
Системы отопления, вентиляции, кондиционирования воздуха должны обеспечивать комфортный (благоприятный) режим для прихожан, долговременную сохранность как конструкций и росписи самого храма, так и произведений станковой живописи, и максимально сокращать поступление с приточным воздухом агрессивных газов и пыли и не создавать высокой подвижности воздуха и колебаний тепловлажностного режима у поверхностей росписи храма и станковой живописи.
Храмы круглогодичного действия должныбыть оборудованы системами центрального или местного отопления и системами естественной вентиляции, а по результатам расчета тепловлажностного режима – механическими системами вытяжной, приточной, приточновытяжной вентиляции, приточной вентиляции, совмещенной с воздушным отоплением, или системами кондиционирования воздуха.
При устройстве систем кондиционирования воздуха в древних храмах, представляющих архитектурную и историкокультурную ценность, рек. предусматривать реабилитационный период (1–2 года), в течение которого обеспечивается постепенное достижение нормируемых допустимых (оптимальных) параметров воздуха. Это необходимо для того, чтобы избежать возникновения влажностных и температурных деформаций, приводящих к разрушению станковой живописи, настенных росписей, декоративной отделки и предметов богослужения, долгое время существовавших в иных температурновлажностных условиях.
Особо ценные предметы внутреннего убранства (древние иконы, реликвии и т. д.) следует защищать локально, например, помещая их в «музейные витрины», в которых поддерживаются постоянные во времени параметры воздуха (t = 18 °C и f = 55 %).
В настоящее время закончен пересмотр cтандарта НП «» «Храмы православные. Отопление, вентиляция, кондиционирование воздуха» (200 [4], в котором сформулированы основные положения по проектированию систем отопления, вентиляции и кондиционирования воздуха и по выбору теплотехнических характеристик ограждающих конструкций во вновь возводимых, реставрируемых и реконструируемых православных храмах.
Литература
V. Bearzi. Luoghi di culto. Impianti Radianti o Misti? // RCI. Febraio. 2003.
Сканави А. Н., Махов Л. М. Отопление. М.: АСВ, 2002.
Стандарт НП «». Храмы православные. Отопление, вентиляция, кондиционирование воздуха. № 2002.
Проект МГСН «Многофункциональные высотные здания и комплексы» Проектирование и нормативно. Инженерные системы жилых зданий со свободной планировкой квартир Энергоэффективные здания. Технологии. Водоснабжение и водоотведение высотных зданий Водоснабжение. KWL. На главную Энергоучет 0.0036 |
|