![]() | |
![]() ![]() |
На главную Энергоучет Системы канализации высотных зданий Канализация
Что касается систем канализации, то вопросы их надежности и безопасности возникали у специалистов нашей страны, по крайней мере, дважды: в 1950х годах в начале массового строительства зданий высотой выше 16 этажей (при строительстве 22этажных зданий) и в конце 1960х при проектировании первого в СССР 25этажного жилого дома (Москва, проспект Мира, д. 18 .
Как известно, в 22этажных домах (жилые дома на пл. Восстания, Котельнической наб., административные здания на пл. Восстания, Каланчевке, у Красных Ворот, МГУ) применены двухтрубные системы канализации, состоящие из двух стояков: один из них диаметром 150 мм принимает сточную жидкость (почему и носит название «сточный» или «мокрый»), назначением второго, который соединяется перемычками со сточным стояком, является подача воздуха в сточный стояк для предотвращения возникновения в нем разрежений, приводящих к срыву гидравлических затворов у приборов и оборудования, присоединенных к первому стояку. Второй стояк называется «сухим» или «вентиляционным» и имеет диаметр 100 мм.
Двухстояковые системы канализации аналогичны системам канализации высотных зданий США. В качестве примера назовем 69этажное здание Рокфеллер центра в НьюЙорке, в котором и сточный, и вентиляционный стояки имеют диаметр 12” (300 мм).
Как это ни парадоксально, но в вышеназванном 25 этажном жилом доме система канализации включает один стояк диаметром 100 мм, к которому поэтажные отводные трубопроводы присоединены под углом 90°.
Положительный опыт эксплуатации этой системы позволил внедрить ее в массовое строительство жилых и общественных зданий в нашей стране и подтвердил правильность предпосылок, положенных в основу полуэмтерической модели системы канализации зданий.
В соответствии с этой моделью, при истечении из поэтажного отвода в стояк жидкость перекрывает часть его сечения ( , образуя сжатое сечение стояка. При своем движении вниз жидкость увлекает из атмосферы воздух. При этом величина эжектирующей способности жидкости больше, чем величина фактического расхода воздуха, поступающего в стояк.
В результате, ниже сжатого сечения стояка возникает дефицит воздуха, или разрежение. (Например, при расходе жидкости 1 л/с в стояке диаметром 100 мм экспериментально измеренная величина эжектирующей способности равна 25 л/с воздуха, а фактически поступающее в стояк количество воздуха равно лишь 14 л/с, поэтому ниже сжатого сечения в стояке возникает дефицит воздуха, равный 11 л/с, и разрежение порядка 10–12 мм).
С увеличением расхода жидкости уменьшается площадь живого сечения воздуха в сжатом сечении стояка и, следовательно, уменьшается расход воздуха, фактически поступающего в стояк из атмосферы. При этом с увеличением расхода жидкости увеличивается величина ее эжектирующей способности и дефицит воздуха в стояке. Наконец, при какойто величине расхода жидкости, который называется критическим, в стояке возникает критическое разрежение и происходит срыв затвора у одного из санитарнотехнических приборов, присоединенных к сточному стояку. Через сорванный затвор в стояк поступает дополнительное количество воздуха, поэтому затворы у других приборов остаются в неприкосновенности /1/.
Специально выполненные исследования показывают, что срыв гидравлического затвора происходит при разрежении, примерно равном высоте этого затвора.
Величина же разрежения зависит от величины расхода жидкости, диаметров стояка и поэтажных отводов и угла входа жидкости в стояк /1/. Все эти параметры, включая минимальную высоту гидравлического затвора, присоединенного к расчетному стояку, следует учитывать при проектировании.
Что касается высоты и геометрии канализационного стояка, то влияние этих параметров на надежность системы канализации нуждается в специальном анализе.
Прежде всего, следует отметить, что большинство исследователей систем канализации не связывают пропускную способность стояка с его высотой, если речь идет о высотах, превышающих длину начального участка вертикального трубопровода. Например, проф. Н.И. Фальковский /2/ отмечает, что «…предельная v движения жидкости достигается при сравнительно коротком падении». Со ссылкой на данные Иллинойского университета, где проводились эксперименты со стояками высотой 12,6 м, он приводит зависимость, в соответствии с которой величина разрежения Р в стояке является функцией исключительно расхода жидкости:
где:
Q – расход жидкости по стояку;
K – коэффициент, зависящий от расположения трубопроводов и единиц измерения P и Q;
n – постоянная, зависящая от типа и диаметра вентиляции.
А. И. Карпинская /3/, выполнявшая экспериментальные исследования на стояках диаметром 100 и 125 мм, высотой 41 м, определила их пропускную способность равной 4,4 л/с и 6,98 л/с, соответственно; отметим, что мы получили те же результаты при исследовании пропускной способности стояков диаметром 100 мм, высотой 18,53 м и 60 м /1/.
В 1963 г. датский исследователь Э. Моркк /4/ на основании выполненных исследований высказал однозначное мнение о том, что при увеличении расхода жидкости ее v увеличивается и достигает своего конечного максимального значения через 15 м от точки входа в стояк. Поэтому, подчеркивает Э. Моркк, v движения жидкости в стояках высотой 50 или 80 м будет такой же, как в стояках высотой 15 м.
Немецкий исследователь Ф. Полльман отмечает, что вертикальный поток достигает своей максимальной скорости через один или два этапа падения /5/.
Наши экспериментальные исследования /1/ показывают, что величина эжектирующей способности жидкости, движущейся в вертикальном трубопроводе, стабилизируется на его длине, равной 90 Dст (Dст – расчетный диаметр стояка) ( . На этом основании можно полагать, что эпюра скоростей и жидкости, и воздуха, движущегося за жидкостью в вертикальном трубопроводе, принимают свою окончательную форму через 90 Dст течения. Следовательно, сколь ни велика была бы высота канализационного стояка, его пропускная способность равняется пропускной способности, сформированной в конце длины его начального участка (90 Dст).
Обобщение результатов как собственных, так и исследований других авторов, позволило нам получить единую зависимость для расчета величины разрежений в канализационном стояке /1/:
где:
р – величина разрежений в канализационном стояке, мм вод. ст.;
qs – расчетный расход сточной жидкости, м3/с;
aугол присоединения поэтажного отвода к стояку, град;
Dcт – расчетный (внутренний) диаметр стояка, м;
dотв – расчетный (внутренний) диаметр поэтажного отвода, м;
Lст – рабочая высота канализационного стояка, т.е.
вертикальный участок стояка от точки присоединения наиболее высоко расположенных в здании приборов до нижнего cгиба стояка (участок стояка, по которому движется сточная жидкость), м.
Поскольку эпюра скоростей течения жидкости в вертикальном трубопроводе принимает свою окончательную форму через 90 Dст (и, следовательно, величина эжектирующей способности жидкости становится максимальной и постоянной), при расчетах в случае Lст 90 Dст следует принимать Lст = 90 Dст.
Формула /2/ положена в основу регламентов по проектированию систем канализации зданий в СНиП IIГ.4 70, СНиП II3076, СНиП 2.04.0185, СНиП 2.04.0185*, СП 401022000 и СП 40107200 На основании этих норм построены и успешно эксплуатируются тысячи систем канализации в зданиях различного назначения и этажности, в т.ч. такие как 40этажное здание Министерства внешней торговли, 29этажные здания Академии общественных наук, 30этажные здания олимпийского гостиничного комплекса «Измайлово» в Москве и т.д.
По формуле /2/ рассчитана и ЦНИИЭП жилища в 2002 г. запроектирована система канализации жилого комплекса высотой 43 этажа, который в настоящее время построен и введен в эксплуатацию (Москва, Давыдковская ул.).
Литература
Фальковский Н.И. Санитарнотехническое оборудование зданий. М., Госстройиздат, 1938, 271 с.
Карпинская А.И. Особенности канализования высотных зданий. // Сб. трудов ЛОНИИоснований и фундаментов, Л., Машстройиздат, 1950, с. 2329.
MORCK E.P. Что происходит в канализационном стояке? Bygge Gndustrie, N 15, 10 August 1963, s. 752756.
Pollman Fr. Sanitare Technik, 1960, I, 25 Jg.HП, S. 2127.
![]() ![]() ![]() ![]() На главную Энергоучет 0.004 |
|