Промышленная резка бетона: rezkabetona.su
На главную  Водоснабжение 

К вопросу о канальных вентиляторов Вентиляция

Примем, что базовой идеей как рассматриваемой статьи [1], так и данного материала является сравнение рабочих характеристик («аналитический анализ» «энерговооруженности» [1]) канальных вентиляторов, построенных по различным конструктивным схемам.

 

Для простоты изложения в дальнейшем конструктивное решение прямоугольного канального вентилятора с горизонтально лежащим рабочим колесом и двигателем с внешним ротором с колесами различных типов будем называть вентиляторами, построенными по европейской схеме. Прямоточные же вентиляторы с приводом от общепромышленных асинхронных двигателей российского производства – прямоточными.

 

Не рассматривая вводные главы статьи [1], где ее автор, несомненно, крайне интересно излагает историю появления и эволюции канальных вентиляторов, присутствующих сейчас на рынке, перейдем к главе «аналитический анализ конструкций канальных вентиляторов».

 

Вначале хочется остановиться на том, что отсутствие названий моделей, используемых для построения основных сводных сравнительных таблиц, вносит неясности и вызывает большое количество вопросов. Изза этого приходится догадываться, какую именно модель данного типоразмера использовал автор [1]. В совокупности с тем, что для других, более подробных таблиц автор зачастую использует оборудование других марок и моделей, это вносит затруднение в сквозном сравнении рабочих характеристик.

 

Для сравнения рабочих характеристик вентиляторов различных типов автор [1] определяет характерные скорости в каналах. Для прямоугольных вентиляторов характерная v 3,5 м/с в прямоугольном воздуховоде с сечением, равным типоразмеру вентилятора. Для круглых каналов автором [1] определена характерная v в присоединяемом круглом канале, равная 5,5 м/с.

 

Сразу хочется отметить, что величины характерных скоростей в каналах для вентиляторов выбраны в [1], на взгляд автора данной статьи, не совсем корректно.

 

Как указано автором [1], выбранные скорости «присущи работе на приток и на вытяжку», причем для прямоугольных вентиляторов в том числе и через круглые каналы, диаметр которых равен минимальному размеру сечения прямоугольного канала.

 

Здесь хочется обратить внимание на то, что автор постоянно приводит данные по максимальной высоте вентиляторов, считая ее весьма важным рабочим параметром. Исходя из этого, становится ясно, что автор [1] рассматривает как один из основных вариантов монтажа установку вентиляторов в запотолочном пространстве непосредственно в вентилируемых помещениях. В противном случае, т. е. при размещении вентиляторов во вспомогательных помещениях либо в вентиляционных камерах, данный параметр не играет практически никакой роли.

 

Принимая во внимание монтаж в запотолочном пространстве, и тот факт, что сам автор [1] считает одним из вероятных вариантов монтажа переход на круглые воздуховоды, хочется отметить, что v в прямоугольном сечении выбрана завышенно. Вопервых, при переходе на круглое сечение v в воздуховоде у подавляющего большинства вентиляторов достигает величины 8,9 м/с (табл. , что ведет к недопустимому повышению уровня шума в помещении. Вовторых, т. к. мы рассматриваем вентилятор как элемент приточной системы, хочется отметить следующее — европейские производители комплексных вентиляционных установок рекомендуют v в свободном сечении в диапазоне 2,0–3,0 м/с, с наиболее рекомендованной вилкой от 2,0 до 2,5 м/с. Это связано с энергоэффективностью установок, потерями давления на внутренних элементах и, что наиболее важно в рассматриваемом случае, уровнем шума. Этот же факт отражен у некоторых производителей вентиляторов [6].

 

Кроме того, при принимаемой автором статьи [1] характерной скорости рабочие точки у множественных вентиляторов оказываются либо вообще за зоной максимального расхода, либо вблизи нулевого давления, что вряд ли «присуще работе на приток и на вытяжку» [1] (для наиболее распространенных круглых вентиляторов с радиальным рабочим колесом рабочие точки также оказываются вблизи нулевого давления).

 

Дополнительно следует отметить, что так как большая часть сравниваемых прямоугольных вентиляторов имеет крыльчатки с лопатками, загнутыми назад, то перемещение рабочей точки влево скажется положительно на эфф. работы [3].

 

Учитывая вышеизложенное, предлагается провести сравнение прямоугольных вентиляторов при скорости 2,2 м/с, при которой v воздуха в круглых каналах не превышает 5,6 м/с, снижается уровень шума непосредственно выбранного вентилятора и, кроме того, повышается энергоэффективность.

 

Для данного сравнения автором [1] вводится понятие приведенного давления p Па/м, которое определяется как отношение давления в рабочей точке к единице размера максимальной высоты («…давление вентилятора на характерной скорости приводить к единице величины минимального размера поперечного габарита» [1]). Здесь хочется отметить, что так как происходит сравнение прямоугольных вентиляторов с поразному решенным, но встраиванием двигателя в корпус, а следовательно, вентиляторов крайне близких максимальных размеров в пределах одного типоразмера, то данное введение кажется не до конца обоснованным и несколько затрудняющим самостоятельную проверку выводов статьи [1].

 

После введения характерных скоростей воздуха и понятий автор [1] переходит к сравнению рабочих характеристик вентиляторов одинаковых типоразмеров различных конструкций.

 

Вначале происходит сравнение прямоугольных вентиляторов трех типов: европейских с рабочими колесами с лопатками, загнутыми вперед (в качестве примера берутся вентиляторы KT компании Systemair), европейских с рабочими колесами с лопатками, загнутыми назад (в качестве примера берутся вентиляторы RS компании SYSTEMAIR), и прямоточных вентиляторов (в качестве примера берутся вентиляторы ВРПП компании «КлиматВентМаш»).

 

Эти данные сводятся в табл. 3 [1], и на их основании (в основном на сравнении приведенного давления) делается вывод об «энерговооруженности» [1] различных марок вентиляторов (и, исходя из этого, различных типов вентиляторов). Кажется довольно странным, что понятие энерговооруженность автор [1] вводит исходя из параметра Па/м.

 

Автор данной статьи хотел бы ввести понятие приведенного давления к энергопотреблению (Па/кВт) и, соответственно, вывести из него понятие энергоэффективность, которое, по нашему мнению, весьма важно для понимания эфф. различных конструктивных решений вентиляторов.

 

Для более достоверного определения данного параметра необходимо, конечно, использовать значение энергопотребления в конкретной точке. Но, к сожалению, большинство производителей не дает графика изменения потребляемой энергии в зависимости от местонахождения рабочей точки. Поэтому при определении энергоэффективности давление будет приводиться к единице максимального энергопотребления. Некоторое извинение для себя в принятии данного допущения автор этой статьи видит в том, что даже в случае, когда график изменения энергопотребления приводится производителем, при проектировании чаще всего учитывается именно максимальное энергопотребление.

 

На основании данных, полученных в табл. 3 [1], автор [1] делает выводы, вопервых, о превосходстве вентиляторов KT перед RS в «энерговооруженности» (при этом, т. к. данные вентиляторы взяты как типичные примеры европейских вентиляторов с различным типом лопаток, предполагается вывод, что вентиляторы с лопатками, загнутыми вперед, «энерговооруженней» вентиляторов с крыльчатками, загнутыми назад).

 

Далее делается заключение о превосходстве вентиляторов ВРПП перед вентиляторами KT и RS (из чего предполагается вывод о превосходстве в целом прямоточной конструкции по сравнению с европейской).

 

Не до конца ясно, какие именно модели каждого типоразмера автор [1] использует для получения данных для табл. 3 [1]. Можно предположить, что из вентиляторов KT используются вентиляторы с 4полюсным двигателем (это следует из того, что для типоразмера 1 000і500, где нет КТ….4 взят вентилятор REMAK). Вероятнее всего, и для других типов вентиляторов взяты самые мощные в своем типоразмере модели.

 

Здесь особенно хотелось бы отметить следующее: автор [1] совершенно не учитывает и не приводит в таблице параметры собственно двигателя сравниваемых вентиляторов, но рабочие параметры привода во многом определяют характеристики вентилятора и слово «привод» не даром вынесено в название статьи [1]. Кроме того, целью статьи [1], как кажется, является показать превосходство именно конструктивных схем вентиляторов, а не того, что более мощные и высокооборотистые двигатели позволяют получить более высокие показатели расхода и давления, что и так не подлежит сомнению.

 

При этом вентиляторы KT, как уже указывалось выше, максимально используют только 4полюсные двигатели с частотой вращения примерно 1 350 мин–1, в большинстве типоразмеров RS также максимально используются двигатели данной частоты. Не все европейские производители используют 2полюсные двигатели, т. к. их применение влечет за собой увеличение шума. Основная же масса вентиляторов ВРПП решена именно на основе 2полюсных двигателей с частотой вращения примерно 2 900 мин– При этом необходимо так же учитывать различные мощностные характеристики двигателей.

 

в табл. 3 [1] происходит подмена сравнения преимуществ непосредственно конструктивных решений сравнением параметров вентиляторов с заведомо различными двигателями.

 

В связи с этим сведем все данные в единую таблицу (табл. с указанием параметров используемых двигателей. Дополнительно, для более реального сравнения используем в качестве примеров европейских вентиляторов с лопатками, загнутыми назад, не только вентиляторы RS, но и вентиляторы KHAD компании ROSENBERG. Кроме того, в связи с ограниченностью места статьи ограничимся сравнением вентиляторов с крыльчаткой с лопатками, загнутыми назад, при выборе вентиляторов, вносимых в таблицу, в первую очередь, будем вносить модели, имеющие наиболее близкие аналоги по параметрам двигателя в модельном ряду вентиляторов другого типа.

 

Для составления табл. 2 использованы данные из каталогов производителей ([2], [3], [4], [6], [7]).

 

При рассмотрении табл. 2 становится очевидным следующее: вентиляторы европейские и прямоточные с лопатками, загнутыми назад, со сравнимыми характеристиками используемых приводов, имеют практически одинаковый показатель давления в характерной точке. Это ясно видно при сравнении, например, следующих пар вентиляторов: KHAD 2802 и ВРПП 60x30Г3; RS 8050M3 и ВРПП 80x50А3.

 

После выводов, полученных на основании табл. 3 [1], автор [1] переходит к более детальному сравнению рабочих характеристик вентиляторов со сходными аэродинамическими характеристиками (табл. 4, табл. 5 [1]).

 

При этом автор [1] сравнивает вентиляторы совершенно разных типоразмеров, которым он сам «назначил» совершенно разные типичные рабочие точки и, кроме того, опять с совершенно разными рабочими параметрами двигателей. Более того, используются абсолютно другие модели, чем применялись в табл. 3 [1], что делает невозможным сквозное сравнение.

 

Сравним по предложенной автором [1] схеме вентиляторы, которые, как мы выяснили, имеют схожие параметры двигателей и рабочих точек (табл. 3, табл. 4, .

 

Кроме того, обратим внимание на следующее: область использования прямоугольных вентиляторов малого сечения — это в основном коттеджное строительство и отдельной квартиры. Поэтому так же одним важным фактором является номинальный и пусковой ток (для вентиляторов КВМ данные по силе тока берутся из каталога двигателей [7]).

 

Из данных, приведенных в табл. 3, 4 и 1, видна схожесть аэродинамических характеристик. Сравнение шумовых характеристик неоднозначно. Значения токовой нагрузки значительно выше для вентиляторов с общепромышленными двигателями.

 

Далее автор переходит к сравнению вентиляторов для круглых каналов. Как и в случае с вентиляторами для прямоугольных каналов, не уделяется никакого внимания параметрам двигателей и, кроме этого, опять не указаны конкретные модели, характеристики которых приведены в табл. 6 [1].

 

Здесь происходит самое непонятное: в качестве примера прямоточных вентиляторов отечественного производства автор [1] использует все те же вентиляторы для прямоугольных каналов ВРПП, но с адаптерами. Причем из данного анализа делается вывод о том, «…что вентиляторы с приводом от стандартного двигателя по приведенному давлению превосходят остальные вентиляторы в несколько раз…».

 

Этот ход автора [1] совершенно непонятен, так как, вопервых, в номенклатуре оборудования КВМ имеются вентиляторы для круглых каналов ВРКК, о которых упоминается в рассматриваемой аналитической статье [1], и, вовторых, вентиляторы европейской компоновки также (что естественно) можно использовать с адаптерами, но нам придется сравнивать так же раз те же самые вентиляторы.

 

Не совсем понимая, с чем связан сам факт сравнения вентиляторов ВРПП с круглыми вентиляторами, автор данной статьи предлагает произвести, на его взгляд, более логичное сравнение вентиляторов для круглых каналов ВРКК с вентиляторами серии KD с диагональными рабочими колесами (опять с учетом ограничения объема статьи сравнение с заведомо более слабыми вентиляторами с радиальными рабочими колесами не проводится).

 

При этом, как и в табл. 2, уделяется большое внимание параметрам двигателя вентилятора и, по возможности, выбираются модели с близкими параметрами, в связи с этим в таблице не приведены вентиляторы KD, использующие 2полюсный двигатель. Данные сведены в табл. 5, при составлении которой использованы значения из каталогов производителей ([2], [3], [5], [7]).

 

Сравнение вентиляторов с колесами диагонального типа и прямоточных вентиляторов, использующих электродвигатели со схожими параметрами, четко демонстрирует большую близость их рабочих характеристик. Это хорошо видно при сравнении таких пар вентиляторов, как, например, KD 315XL1 и ВРКК 315Б3 или KD 450XL3 и ВРКК 450А3.

 

Далее автор [1], как и в случае с прямоугольными вентиляторами, переходит к более детальному сравнению рабочих параметров различных вентиляторов, имеющих схожие аэродинамические кривые. Здесь также непонятно, используются ли для детального сравнения те же модели, что и в обобщающей таблице, или другие.

 

По примеру автора [1] проведем детальное сравнение некоторых пар вентиляторов со схожими параметрами двигателей (табл. 6, табл. 7, .

 

На основе данных табл. 6 и табл. 7 видно, что шумовые характеристики прямоточных вентиляторов лучше, но при этом аэродинамические характеристики несколько лучше у вентиляторов с диагональными колесами.

 

Исходя из приведенных в этой аналитической статье данных, необходимо признать, что часть выводов, сделанных в аналитической статье [1], не до конца обоснована.

 

Кроме того, ясно показано, что принципиальное конструктивное решение прямоточных вентиляторов с крыльчатками с лопатками, загнутыми назад с использованием привода от стандартного двигателя не дает преимуществ в аэродинамических и энергосберегающих характеристиках по сравнению с прямоугольными вентиляторами европейской компоновки, использующими крыльчатку с лопатками, загнутыми назад, и круглыми вентиляторами с диагональными рабочими колесами с приводом от двигателя с внешним ротором (при использовании двигателей со схожими рабочими характеристиками).

 

Литература
Эсманский Р. К. Канальный вентилятор и его привод // . 200 № 5.

 

КЛИМАТВЕНТМАШ. Вентиляторы. Воздушные завесы. 2004.

 

Каталог продукции Systemair. 2003.

 

базовой каталог Rosenberg. 2001—2002.

 

OSTBERG. Ductand wallfans. 2004.

 

REMAK. Канальные радиальные вентиляторы с вперед загнутыми лопатками. 2003.

 

ЭЛКОМ. Двигатели серии АИР. 2004.

 



Концепция энергоэффективного здания. Европейский опыт Теплоизоляционные материалы. О новом федеральном законе РФ «О техническом регулировании» Проектирование и нормативно. Учет тепла в Приморском крае Учет теплоносителей и стоимость тепла. Cтеклянные двойные фасады. Имеют ли смысл, с точки зрения строительной физики, новые разработки фасадов? Энергоэффективные здания. Технологии.

На главную  Водоснабжение 





0.0053
 
Яндекс.Метрика