![]() | |
![]() ![]() |
На главную Водоснабжение Защита приточного воздуха от заражения химическими и биологическими агентами Микроклимат в помещениях Центр контроля заболеваний разделяет биологические агенты по критериям легкости распространения и вероятности летального исхода для их жертв. Правительство США рассматривает наиболее стабильные, надежные, эффективные и удобные в доставке агенты как потенциальное оружие террористов.
В качестве наиболее вероятных кандидатов для использования в качестве биологического оружия чаще всего упоминаются возбудители сибирской язвы, ботулизма, чумы, оспы, туляремии и разнообразные виды вирусной геморрагической лихорадки ( врезку «Бактерии и вирусы»).
Бактерии могут иметь размеры от 0,3 до 35 микрон в диаметре, вирусы – от 0,01 до 0,3 микрон. Чтобы представить, насколько малы бактерии и вирусы, скажем, что точка в конце этого предложения имеет диаметр около 300 микрон.
Если бактериальные и вирусные агенты разбрызгиваются в воздухе в виде аэрозоля, аэрозольные частицы должны иметь размеры, позволяющие им переноситься в воздухе как туман. Аэрозольные частицы диаметром от 0,5 до 5 микрон обычно осаждаются в легких. Меньшие частицы могут попасть в организм с вдыхаемым воздухом, но большинство из них затем удаляются с выдохом. Частицы больше 5–15 микрон оседают в носоглотке или трахее и не достигают легких. Аэрозольные частицы крупнее 15–20 микрон преимущественно осаждаются на землю.
Другой формой биологического оружия являются токсины, представляющие собой любые токсичные вещества, вырабатываемые животными, растениями или микробами ( врезку «Токсины»). Токсины, в отличие от бактериальных и вирусных агентов, не репродуцируются. Только один класс легко вырабатываемых токсинов, трихоцетиновые микотоксины, активен на коже. С наибольшей вероятностью токсин попадает в организм человека в виде вдыхаемого аэрозоля, с зараженной пищей или водой (хотя в последнем случае это довольно трудно вследствие хлорирования воды и эффекта разбавления).
Так как токсины попадают в организм человека в виде вдыхаемого аэрозоля, в качестве оружия массового поражения они имеют ограничения по своей поражающей способности и легкости производства. Современные технологии не позволяют производить большинство даже менее токсичных агентов в достаточных количествах. Важным фактором является также стабильность токсинов после аэрозольного разбрызгивания, ограничивающая эффективность токсинов как оружия.
Разработка приборов, обнаруживающих токсины в реальном времени, представляет собой трудную задачу по нескольким причинам. В отличие от химических агентов, которые могут обнаруживаться в течение нескольких часов, токсины могут быть обнаружены в какойлибо определенной точке и только в течение нескольких минут. Кроме того, приборы обнаружения токсинов (при современном уровне технологии) должны обладать способностью идентифицировать токсин и отличать его от других органических материалов, находящихся в воздухе.
процедура обеззараживания, рекомендуемая для защиты от агентов химического оружия, эффективно разрушает также и токсины. Применяемая в быту хлорная известь различной концентрации и интенсивности нанесения разрушает большинство токсинов. Мыло и вода, или даже просто вода, могут эффективно удалять большинство токсинов с кожи, одежды и оборудования.
Химическое оружие
на открытом воздухе химические агенты сами постепенно теряют свою эффективность и рассеиваются без вмешательства людей. Этот цикл обычно длится от нескольких часов до нескольких недель.
Химическое оружие подразделяется на вещества, поражающие нервную систему и кровь, вещества кожнонарывного, удушающего действия, слезоточивые газы, средства, временно выводящие из строя и воздействующие на психику, промышленные химикаты ( врезку «Химические агенты»). Некоторые агенты применяются в газообразной форме, другие – в виде аэрозолей. Кроме того, существуют потенциально опасные промышленные химикаты, которые могут использоваться при террористической атаке, но опасность этого вида в этой аналитической статье не анализируется.
Ботулизм.
Чума.
Оспа.
Туляремия.
Вирусная геморрагическая лихорадка (VHF).
Туберкулез.
Защитные функции систем ОВК
Приточные и вытяжные каналы, имеющиеся в каждом помещении, в котором находятся люди, должны снабжаться быстро закрывающимися изолирующими заслонками. Эти заслонки могут приводиться в действие вручную с постоянного поста охраны, расположенного у каждого входа канала. Каждое помещение, в котором находятся люди, должно снабжаться специальной вытяжной системой.
В безлюдных зонах здания должно поддерживаться слегка повышенное давление воздуха по отношению к зонам, в которых находятся люди, и по отношению к наружному воздуху.
Устройства забора наружного воздуха должны располагаться в верхней части здания. Возможен вариант установки на нулевом уровне, но в этом случае необходимо оснащение охранными устройствами и сооружениями по периметру здания. Каждое устройство забора может быть окружено полноразмерными сплошными стенами, оснащено наклонным козырьком для защиты от птиц, широкоугольными камерами наблюдения и системой освещения.
В каналах системы вентиляции на лестницах аварийного выхода с воздухозабором снизу могут устанавливаться HEPAфильтры (HighEfficiency Particulate Filter – высокоэффективный сухой воздушный фильтр) с модифицированными вентиляторами. Высокая степень очистки оправдывается значимостью лестниц в системе безопасности и возможной степенью концентрации людей в ограниченном пространстве при использовании этих лестниц в качестве аварийных выходов. На таких больших площадях, как лестничные пролеты, споры сибирской язвы удаляются весьма трудно, поэтому связанное с очисткой перекрытие лестничных выходов на неделю и дольше фактически повлечет закрытие всего здания изза отсутствия в нем аварийных выходов.
Воздушные фильтры должны устанавливаться во всех рециркуляционных и/или воздухозаборных каналах системы обработки воздуха. Параметры фильтров должны соответствовать предполагаемому виду химической или биологической угрозы. Блок фильтров может быть установлен последовательно с основным агрегатом обработки воздуха или в байпасной конфигурации для специального подключения системы очистки от химических/биологических веществ.
Следует отметить, что до сих пор отсутствуют системы эффективного обнаружения химических и биологических веществ, встроенные в последовательность автоматических операций систем вентиляции зданий. Применение систем обнаружения химических агентов ограничено изза слишком большого времени пробной реакции, возможности ложных тревог, широкого спектра необходимых функциональных возможностей и видов технического обслуживания. Для биологических агентов отсутствуют системы обнаружения, работающие в реальном времени.
Типы устройств и приспособлений для очистки воздуха
HEPAфильтры
В качестве фильтрующего материала используются гофрированные спереди и сзади слои бумаги из стеклянного микроволокна, разделяемые гофрированными алюминиевыми пластинами, заключенные в деревянный или металлический патрон. Фильтр такого типа может работать в большом диапазоне внешних условий (вплоть до 100 % относительной влажности и при температуре до 121 °С).
Такие фильтры обеспечивают задержку частиц диаметром 0,3 микрон с эффективностью 99,97 %.
Принято считать, что наиболее трудно задерживать частицы размером 0,3 микрон (не больше и не меньше). и так высоко ценятся HEPAфильтры, удерживающие частицы именно такого размера. Наибольшая эффективность HEPAфильтров достигается при фильтрации частиц с размером, большим 0,3 микрон. Усовершенствования в технологии производства фильтрующих материалов привели к так же большим показателям эффективности.
Размер большинства известных бактерий лежит в диапазоне от 0,2 до 5 микрон. Вирусы имеют размеры от 0,01 до 0,3 микрон. Однако, т. к. для жизнедеятельности вирусов необходим «хозяин», они обычно прикрепляются к бактериям или другим большим объектам, таким как водяные капли (размером от 0,5 до 5,0 микрон).
Стандартные HEPAфильтры имеют аэродинамическое сопротивление 249 Па при скорости на фронтальной поверхности 1,3 м/с. HEPAфильтры повышенной производительности создают перепад давления 348 Па при скорости на фронтальной поверхности 2,5 м/с при таком же качестве фильтрации воздуха. Значения перепадов давления фильтров для фильтрации грязи лежат в пределах от 498 до 572 Па.
HEPAфильтры могут устанавливаться либо в кожух фильтра с боковым доступом (со сменным мешком или с простым выдвижным картриджем), либо спереди во встроенную опорную раму. Уплотнение м. корпусом фильтра и кожухом выполняется при помощи прокладки или геля. Прокладка м. фильтром и кожухом поджимается механизмом фиксации, прижимающим фильтр к сплошной плоской установочной поверхности внутри кожуха, сопрягающейся с периметрической прокладкой на фильтре. Техника уплотнения при помощи прокладок является обычным и надежным методом уплотнения фильтров в кожухах в системах ОВК.
Гель наносится м. фильтром и кожухом и непрерывной ножевой кромкой проталкивается внутрь канала, идущего по периметру передней стороны фильтра. Для заполнения геля в канале механизм фиксации поджимает фильтр к ножевой кромке. Эта кромка проникает в гель, в результате чего на передней стороне фильтра образуется равномерное уплотнение. Для установок с постоянной опасностью вредных воздействий используется кожух со сменным мешком и боковым доступом.
Высокоэффективные фильтры
Эффективность фильтрации может меняться от 90 до 99 % для бактерий сибирской язвы (размером 1 микрон) и близко к 100 % для спор этих бактерий (2 микрона), что весьма близко к эфф. HEPAфильтров (99,97 % для размера 1 микрон). но для более мелких болезнетворных бактерий и капель воды, переносящих вирусы размером от 0,2 до 0,5 микрон, эффективность падает до 60–95 %. Такие фильтры не могут защитить от химической газовой атаки.
При скорости потока на фронтальной поверхности 2,5 м/с перепад давления на свежем фильтре лежит в пределах от 40 до 211 Па, в зависимости от эфф. фильтрации и исполнения кожуха (с картриджем или рукавом). Возможны установки с боковым доступом или передней установкой. Для повышения эфф. фильтрации следует рассмотреть принцип. возможность установки прокладки в кольцевой канал кожуха.
Если не требуется весьма высокая степень фильтрации частиц размером менее микрона, такие фильтры являются более дешевой альтернативой HEPAфильтрам. Наряду с тем, что они более дешевы, для них требуется меньшее давление приточного воздуха и они не требуют значительных работ по реконструкции существующих систем обработки воздуха. Для оценки снижения потока воздуха при их использовании необходимо проведение отдельного анализа.
Фильтры с активированным углем
В качестве базовых материалов для производства угля наиболее часто используются древесина, уголь и скорлупа кокосовых орехов. Эти базовые материалы подвергаются карбонизации, т. е. циклу нагрева до высоких температур, при котором вытесняются все летучие вещества.
Для активирования угля он подвергается вторичному нагреву и обработке паром. Активация угля придает ему уникальные адсорбирующие свойства. В результате активации образуется весьма пористый уголь с большой площадью поверхности, способствующей эффективной адсорбции. Пропитка угля специальными химикатами делает его так же более эффективным адсорбентом.
Активированный уголь адсорбирует вещества на свою поверхность. Если на угле уже не остается свободной поверхности для адсорбции, его эффективность резко снижается. Большое количество угля дольше сохраняет свои характеристики, чем небольшое количество, т. к. в большем количестве имеется большая поверхность для адсорбции. Чем большее время активированный уголь контактирует с загрязняющим веществом, тем большие шансы имеются для адсорбции. Это время контакта называется продолжительностью взаимодействия и измеряется в секундах. Типичная продолжительность взаимодействия лежит в пределах от 0,1 до 0,3 с в приложениях для непромышленных зданий.
На более тонких угольных фильтрах обеспечивается лучшая адсорбция. Если частицы загрязняющего вещества перемещаются по длинному лабиринту активированного угля, шансы их адсорбции возрастают. Гранулированный активированный уголь более эффективен, чем пропитанная угольная пластина толщиной 25 или 50 мм. Гранулированный активированный уголь имеет большую поверхность для адсорбции, чем пропитанная пластина, кроме того, пластину нужно чаще менять.
В активированном угле используется большое количество различных химических доб (медь, серебро, цинк и молибденовый триэтилендиамин). Министерство обороны и Государственный департамент США рассматривают такие фильтры как наиболее эффективное средство универсальной фильтрации промышленных и боевых химикатов при обеспечении достаточной продолжительности взаимодействия угольного слоя. При скорости потока воздуха на фронтальной поверхности 1 м/с перепад давления на фильтре составляет обычно 398 Па. В отличие от пылепоглощающих фильтров, перепад давления на угольном фильтре остается постоянным в течение всего срока использования фильтрового элемента.
Так как угольные фильтры обычно работают в токсичной среде, они имеют приспособленный для установки сбоку корпус из нержавеющей стали. Промышленные угольные фильтры устанавливаются в общий с HEPAфильтром кожух с боковым доступом, имеющий отдельные дверцы для разных фильтров. Такой кожух может иметь или не иметь сменный мешок. Конфигурация со сменным мешком используется для уменьшения контакта с опасными загрязняющими веществами при замене и обслуживании загрязненных фильтров. Кожух фильтров имеет за дверцей рифленое кольцо, на которое крепится мешок из ПВХ. После установки свежих фильтров и закрепления первого мешка все фильтры обслуживаются через мешок. Уплотнение м. корпусом фильтра и кожухом выполняется с помощью прокладки или геля. Гель обеспечивает наиболее герметичное уплотнение при работе в особо опасной среде.
Угольные кассеты размером 609 х 609 х 305 мм весят около 72 кг каждая. Поэтому для облегчения смены фильтров применяются глубокие поддоны со съемной боковой платформой. Изза большого веса угольных фильтров необходима тщательная планировка помещения и места установки опор кожухов фильтров. Уровень фильтрации, обеспечиваемый этими фильтрами, определяет высокую степень защиты от большинства известных химических и биологических атак.
Фильтры с противомикробной обработкой
Ультрафиолетовые излучатели
Излуч. типа UVC уже в течение 50 лет используется для уничтожения микробов в здравоохранении, в пищевой промышленности, в промышленности по утилизации отходов. Излуч. UVC проникает во все бактерии, вирусы и плесневые грибки, модифицирует их ДНК, в результате чего микроорганизмы прекращают воспроизводство и погибают.
Эффективность уничтожения бактерий непосредственно зависит от дозы облучения ультрафиолетовым светом, являющейся функцией времени (в секундах) и плотности облучения (микроватт на см . Доза облучения измеряется в микроваттах в секунду на см2.
Излучатели типа UVC были впервые применены в индустрии ОВК около семи лет назад для очистки поддонов для конденсата и воздухоохладителей в больших агрегатах обработки воздуха. С недавнего времени проявился интерес к применению излучателей типа UVC в качестве защитного средства от биологических атак. Большинство исследований энергетической эфф. установок излучения в диапазоне UVC проводилось для борьбы с микроорганизмами в медицине и пищевой промышленности, а совсем не с редкими бактериями, применяемыми в качестве биологического оружия. Из некоторых сообщений известно, что для уничтожения сибирской язвы, находящейся в бактериальной фазе, необходима доза облучения от 5 000 до 9 000 микроватт в секунду на см2, а при нахождении болезнетворного возбудителя в споровой фазе необходима доза 22 000.
Производители предлагают различные модели UVC излучателей, пригодных для размещения в каналах или в больших приточных установках. Рекомендуется, чтобы поток воздуха имел температуру выше 7 оС (при температуре 0 оС выходная мощность лампы излучателя падает на 15 %), но эти показатели у разных производителей несколько различаются. Рекомендуемая v воздуха лежит в диапазоне от 1,5 до 2 м/с. При скорости 2,5 м/с следует уменьшить расстояние м. потоком и излучателем. Так же как и для обычных электрических лампочек, загрязнение поверхности излучателя уменьшает выходную мощность. Срок службы типичной лампы излучателя UVC размером 609 мм и мощностью 70 Вт составляет приблизительно один год при непрерывном использовании. Дополнительная польза от ультрафиолетовых излучателей, наряду с уничтожением микроорганизмов в проходящем потоке воздуха, заключается в возможности, хотя и ограниченной, улучшать санитарное состояние поверхности фильтров. но в HEPAфильтрах, вследствие их удлиненной и плотной конструкции, это свойство излучателей UVC не может быть использовано.
Изза указанных выше условий, влияющих на способность устройств излучения уничтожать микроорганизмы, они могут рассматриваться только в качестве дополнительных устройств к воздушным фильтрам для защиты в случае биологической атаки.
Электростатический воздухоочиститель с UVизлучателем
В воздухоочистителе используется высоковольтный заряд постоянного тока малой величины, непрерывно подводимый к проводящей центральной сетке одноразовой прокладки толщиной от 25 до 50 мм. Этот заряд создает электростатическое поле м. центральной сеткой и рамой фильтра. Силовое поле поляризует поверхностный заряд на волокнах прокладки и частицах, захваченных фильтром. Затем поляризованные частицы притягиваются и оседают на поляризованных волокнах. при небольшом статическом перепаде давления при помощи неплотного материала прокладки возможно достижение высокой эфф. фильтрации. Одноразовые прокладки меняются приблизительно через каждые шесть месяцев. Патогенные микроорганизмы, захваченные материалом прокладки, дезактивируются излучением UVC.
Заключение
![]() ![]() ![]() ![]() На главную Водоснабжение 0.0032 |
|