![]() | |
![]() ![]() |
На главную Энергоэффективность Арсенид-галиевые солнечные батар
ГФП имеют также более благоприятные с позиции требований к преобразователям СЭС эксплутационные характеристики в сравнении с кремниевыми ФЭП. Так, в частности, принцип. возможность достижения маленьких начальных значений обратных токов насыщение в p-n-переходах благодаря большой ширине запрещенной зоны разрешает свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и, кроме того, существенным образом расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры пишут о том, что повышение равновесной температуры последних до +150...180 °С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше +60...70°С является фактически критическим - КПД падает вдвое.
Благодаря устойчивости к высоким температурам арсенид-галиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180°С, что уже являются целиком рабочими температурами для тепловых двигателей, паровых турбин. к 30% собственного КПД арсенид-галиевых ГФП (при +150°C) можно прибавить КПД теплового двигателя, который использует сбросовое тепло жидкости, которая охлаждает фотоэлементы. Поэтому общий КПД установки, которая вдоб * использует и третий цикл отбора низкотемпературного тепла от охлаждающей жидкости после турбины на обогрев помещений, - может быть даже выше 50-60 %.
Также ГФП на основе GaAs в значительно меньшей мере, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высокой энергии вследствие высокого уровня поглощения света в GaAs, и маленьких необходимых значений времени жизнь и диффузной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки ( отджига) при температуре именно порядка +150...180°С. Если ГФП из GaAs будут постоянно работать при температуре порядка +150°С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций (в особенности это касается космических солнечных энергоустановок, для которых важны малые вес и размер ФЭП и высокий КПД).
В целом можно сказть, что энергетические, массовые и эксплуатационные характеристики ГФП на основе GaAs в большей степени отвечают требованиям СЭС и СКЭС (космические), чем характеристики кремниевых ФЭП.
но кремний является более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространен в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченные. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно усовершенствуется. есть реальная перспектива снижения стоимости кремниевых ФЭП на один-два порядка при внедрении новых автоматизированных методов производства, которые разрешают, в частности, получать кремниевые ленты, солнечные элементы большой площади и т.п.
Цены на кремниевые фотоэлектрические батареи снизились за 25 лет в 20-30 раз с 70-100 $/Вт в семидесятых годах вплоть до 3,5 $/Вт в 2000г. и продолжают снижаться дальше. На Западе можно ожидать переворот в энергетике в момент перехода цены через 3-долларовый рубеж. По некоторым расчетам, это может состояться уже в 2002г. Тут сыграют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. В реально действующих структурах с гетеропереходами КПД достигает на на данный моментшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии на данный момент около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть на данный момент на крышах домов разных стран мира.
В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения. Галлий добывается в основном из бокситов, но анализируется также принцип. возможность его получения из угольной золы и морской воды. Наибольшие запасы галлия имеются в морской воде, но его концентрация там весьма небольшая, концентрация при его извлечении оценивается величиной всего в 1% и, итак, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (отношение роста одного монокристала на поверхности другого (на подкладке)) не развита так же до такой степени, как технология производства кремниевых ФЭП, и в результате этого стоимость ГФП сейчас существенно выше (на порядок) стоимости ФЭП из кремния.
В космических аппаратах, где основным источником тока являются солнечные батареи, где весьма важны разумные соотношения массы, размера и КПД, главным материалом для солнечных батарей, конечно, является арсенид галлия. весьма важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно снижает потребности в дефицитном галлии. Дополнительный резерв экономичности галлия связан с использованием в качестве подкладки ГФП не GaAs, а синтетического сапфира (Al2O . Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразование энергии на основе ГФП из GaAs может оказаться целиком сопоставимой со стоимостью системы на основе кремния. тяжело до конца отдать явное преимущество одному з двух рассмотренных полупроводниковых материалов (кремния или арсенида галлия), и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рациональным для наземной и космической солнечной энергетики. Поскольку СБ выдают непрерывный ток, то возникает задача трансформации его в переменный ток 50 Гц. С этой задачей отлично справляется специальный класс приборов - инверторы. Они относительно недорогие и широко распространенные.
![]() ![]() ![]() ![]() На главную Энергоэффективность 0.0079 |
|