Промышленная резка бетона: rezkabetona.su
На главную  Энергоэффективность 

Физический принцип работы солнеч

Преобразование энергии в ФЭП основано на фотовольтом эффекте, который возникает в неоднородных полупроводниковых структурах при влиянии на них солнечного излучения. Природа этого явления. Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника разными примесями (создание p-n-переходов) ли путем соединения разных полупроводников с неодинаковой шириной запрещенной зоны - энергии отрыва электрона из атома (создание гетеропереходов ), или же за счет изменения химического состава полупроводника, который приводит к появлению градиента ширины запрещенной зоны (создание варизоных структур). Возможны также разные комбинации перечисленных способов. Эффективность преобразования зависит от электрофиз. характеристик неоднородной полупроводниковой структуры, и оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

 

Принцип работы ФЭП можно объяснить на примере преобразователей с p-n-переходом, которые широко применяются в современной солнечной и космической энергетике. Электронно-дырочный переход создается путем легирования пластинки монокристаллического полупроводникового материала с определенным типом проводимости (то есть p- или n- типа) примесью, которая обеспечивает создание поверхностного пласта с проводимостью противоположного типа. Концентрация легирующей примеси в этом пласте должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. На границе n- и p- слоев в результате перетока зарядов образуются обедненные зоны с нескомпенсированным объемным положительным зарядом в n-пласте и объемным отрицательным зарядом в p-пласте. Эти зоны в совокупности и образуют p-n-переход.

 

Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, значит электронов со стороны p-пласта, но беспрепятственно пропускает неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет принцип. возможность получения фото-ЭДС при облучении ФЭП солнечным светом.

 

Созданные светом в обоих пластах ФЭП неравновесные носители заряда (електронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (то есть электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда - фотоэлектронов и фотодырок, которые именно и нужны для работы ФЭП. Если теперь запереть внешнюю цепь, то электроны из n-пласта, сделав работу на нагрузке, будут возвращаться в p-пласты и там рекомбинировать (объединяться) с дырками, которые двигаются внутри ФЭП в противоположном направлении.

 

Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП есть контактная система. На передней, освещенной поверхности преобразователя контакты выполняются в виде сетки или гребня, а на тыльной могут быть сплошными.

 

Основные необратимые потери энергии в ФЭП связаны с: отражением солнечного излучения от поверхности преобразователя, прохождением части излучения через ФЭП без поглощения в нем, рассеянием на тепловых колебаниях кристаллической решётки избыточной энергии фотонов, рекомбинацией фотопар, которые образовались на поверхностях и в объеме ФЭП, внутренним сопротивлением преобразователя, некоторыми другими физическими циклами.

 

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяются разные мероприятия. К их числу относятся: использование полупроводников с оптимальной для солнечного излучения шириной запрещенной зоны; направленное улучшение свойств полупроводниковой структуры путем ее оптимального легирования и создание встроенных электрических полей; переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам; оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового пласта, частоты контактной сетки и т.п.); применение многофункциональных оптических покрытий, которые обеспечивают просветление, терморегулирование и защиту ФЭП от космической радиации; разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за пределом базовой полосы поглощения; создание каскадных ФЭП из полупроводников, специально подобранных по ширине запрещенной зоны, которые разрешают в каждом каскаде превращать излучение, которое прошло через предшествующий каскад, и др. Также значительного повышения КПД ФЭП удалось добиться за счет создания преобразователей с двусторонней чувствительностью (к +80% к уже имеющегося КПД одной стороны), применение люминесцентно переизлучаемых структур, предварительного разложения солнечного спектра на две или больше спектральных области с помощью многослойных пленочных светоделителей (дихроических зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.п.

 

В системах преобразования энергии солнечных электростанций (СЭС) в принципе могут быть использованы любые уже созданные и разрабатываемые в данное время типы ФЭП разной структуры на базе разнообразных полупроводниковых материалов, но не все они отвечают комплексу требований к этим системам:

 

высокая надежность при продолжительному (десятки лет!) ресурсе работы; доступность исходных материалов в достаточный для изготовления элементов системы преобразования количества и принцип. возможность организации их массового производства; приемлемые с позиции термина окупаемости энергозатраты на создание системы преобразование; минимальные затраты энергии и массы, связанные с управлением системой преобразования и передачи энергии (СЭС в космосе), включая ориентацию и стабилизацию станции в целом; удобство техобслуживания. Так, например, некоторые перспективные материалы тяжело получить в необходимой для создания СЭС количества через ограниченность естественных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например, за счет создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.п.

 

Высокая производительность может быть достигнутая лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, значит фактически целой области промышленности, сопоставимой по масштабу с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборник солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза. Как наиболее возможные материалы для фотоэлектрических систем преобразования солнечной энергии СЭС в данное время анализируется кремний и арсенид галлия (GaAs), причем в последнем случае речь идет о гетерофотопреобразователе (ГФП) со структурой AlGaAs-GaAs.

 



Эффективность использования энергии и энергосбережение. Два роки співпраці Українського. Газотурбинные установки ГП НПКГ "Зоря-Машпроект". Системы теплоснабжения с примене.

На главную  Энергоэффективность 





0.0163
 
Яндекс.Метрика