![]() | |
![]() ![]() |
На главную Энергоэффективность Физический принцип работы солнеч
Принцип работы ФЭП можно объяснить на примере преобразователей с p-n-переходом, которые широко применяются в современной солнечной и космической энергетике. Электронно-дырочный переход создается путем легирования пластинки монокристаллического полупроводникового материала с определенным типом проводимости (то есть p- или n- типа) примесью, которая обеспечивает создание поверхностного пласта с проводимостью противоположного типа. Концентрация легирующей примеси в этом пласте должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. На границе n- и p- слоев в результате перетока зарядов образуются обедненные зоны с нескомпенсированным объемным положительным зарядом в n-пласте и объемным отрицательным зарядом в p-пласте. Эти зоны в совокупности и образуют p-n-переход.
Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, значит электронов со стороны p-пласта, но беспрепятственно пропускает неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет принцип. возможность получения фото-ЭДС при облучении ФЭП солнечным светом.
Созданные светом в обоих пластах ФЭП неравновесные носители заряда (електронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (то есть электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда - фотоэлектронов и фотодырок, которые именно и нужны для работы ФЭП. Если теперь запереть внешнюю цепь, то электроны из n-пласта, сделав работу на нагрузке, будут возвращаться в p-пласты и там рекомбинировать (объединяться) с дырками, которые двигаются внутри ФЭП в противоположном направлении.
Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП есть контактная система. На передней, освещенной поверхности преобразователя контакты выполняются в виде сетки или гребня, а на тыльной могут быть сплошными.
Основные необратимые потери энергии в ФЭП связаны с: отражением солнечного излучения от поверхности преобразователя, прохождением части излучения через ФЭП без поглощения в нем, рассеянием на тепловых колебаниях кристаллической решётки избыточной энергии фотонов, рекомбинацией фотопар, которые образовались на поверхностях и в объеме ФЭП, внутренним сопротивлением преобразователя, некоторыми другими физическими циклами.
Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяются разные мероприятия. К их числу относятся: использование полупроводников с оптимальной для солнечного излучения шириной запрещенной зоны; направленное улучшение свойств полупроводниковой структуры путем ее оптимального легирования и создание встроенных электрических полей; переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам; оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового пласта, частоты контактной сетки и т.п.); применение многофункциональных оптических покрытий, которые обеспечивают просветление, терморегулирование и защиту ФЭП от космической радиации; разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за пределом базовой полосы поглощения; создание каскадных ФЭП из полупроводников, специально подобранных по ширине запрещенной зоны, которые разрешают в каждом каскаде превращать излучение, которое прошло через предшествующий каскад, и др. Также значительного повышения КПД ФЭП удалось добиться за счет создания преобразователей с двусторонней чувствительностью (к +80% к уже имеющегося КПД одной стороны), применение люминесцентно переизлучаемых структур, предварительного разложения солнечного спектра на две или больше спектральных области с помощью многослойных пленочных светоделителей (дихроических зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.п.
В системах преобразования энергии солнечных электростанций (СЭС) в принципе могут быть использованы любые уже созданные и разрабатываемые в данное время типы ФЭП разной структуры на базе разнообразных полупроводниковых материалов, но не все они отвечают комплексу требований к этим системам:
высокая надежность при продолжительному (десятки лет!) ресурсе работы; доступность исходных материалов в достаточный для изготовления элементов системы преобразования количества и принцип. возможность организации их массового производства; приемлемые с позиции термина окупаемости энергозатраты на создание системы преобразование; минимальные затраты энергии и массы, связанные с управлением системой преобразования и передачи энергии (СЭС в космосе), включая ориентацию и стабилизацию станции в целом; удобство техобслуживания. Так, например, некоторые перспективные материалы тяжело получить в необходимой для создания СЭС количества через ограниченность естественных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например, за счет создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.п.
Высокая производительность может быть достигнутая лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, значит фактически целой области промышленности, сопоставимой по масштабу с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборник солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза. Как наиболее возможные материалы для фотоэлектрических систем преобразования солнечной энергии СЭС в данное время анализируется кремний и арсенид галлия (GaAs), причем в последнем случае речь идет о гетерофотопреобразователе (ГФП) со структурой AlGaAs-GaAs.
![]() ![]() ![]() ![]() На главную Энергоэффективность 0.0035 |
|