Промышленная резка бетона: rezkabetona.su
На главную  Энергоэффективность 

История электросчетчика

Томас Альва Эдисон (1847-193 , который внедрил первые распределительные осветительные электросети постоянного тока, утверждал, что электричество нужно продавать как газ – в те времена также широко используемый в целях освещения.

 

Его Электрический счётчик, запатентованный в 1881 году (патент США № 251.54 , использовал электрохимический эффект тока. Он содержал электролитическую ячейку, куда в начале расчётного периода помещалась точно взвешенная пластинка меди. Ток, проходящий через электролит, вызывал осаждение меди. В конце расчетного периода, медную пластинку взвешивали снова, и разница в весе отображала количество электричества, которое прошло сквозь нее. Этот счетчик был калиброван что счета можно было выставлять в кубических футах газа.

 

Такие счетчики продолжали использовать до конца 19-го века. Однако у них был один большой недостаток: считывание показаний представляло сложность для энергетической компании и было невозможным для потребителя. Позднее Эдисон добавил счетный механизм для удобства считывания показаний счетчика. Существовали и другие электролитические счетчики, такие как водородный счётчик немецкой компании Сименс-Шукерт (Siemens Shuckert) и ртутный счётчик Йенского стекольного завода Шотт унд Геноссен (Schott&Gen. Jena). Электролитические счетчики могли измерять только ампер-часы и не годились при колебаниях напряжения.

 

Маятниковые счётчики

 

Еще одним из возможных принципов конструкции счетчиков было создание некоторого движения – колебания или вращения – пропорционального энергии, которое,, могло бы запустить счетный механизм для отображения показаний счетчика.

 

Принцип работы маятникового счетчика был описан американцами Вильямом Эдвардом Эйртоном и Джоном Перри в 1881 году. В 1884 году в Германии, не зная об их изобретении, Германн Арон (1845-190 сконструировал маятниковый счетчик.

 

В более усовершенствованной модели этого счетчика имелось два маятника с катушками на каждом, подключенными к источнику напряжения. Под маятниками помещались две токовые катушки с противоположными намотками. Благодаря взаимодействию катушек один из маятников двигался медленнее, а другой быстрее, чем без электрической нагрузки. Эта разность хода передавалась счетному механизму счетчика. Маятники менялась ролями каждую минуту, чтобы компенсировать разницу в исходной частоте колебаний. В этот же момент заводился часовой механизм.

 

Такие счетчики были дорогостоящими, потому что они содержали два часовых механизма, и их постепенно вытеснили моторные счётчики. Маятниковый счетчик позволял измерять ампер-часы или ватт-часы, но его можно было использовать исключительно для сетей постоянного тока.

 

Моторные счетчики

 

Другой альтернативой для создания электросчетчика было использование мотора. В таких счетчиках, вращающий момент пропорционален нагрузке и уравновешивается противодействующим моментом, таким образом, частота вращения ротора пропорциональна нагрузке, как моменты находятся в равновесии. В 1889 году Американец Элиху Томсон (1853-193 разработал свой Самопишущий ваттметр для компании Дженерал Электрик (General Electric).

 

Это был двигатель с якорем без металлического сердечника, который запускался от электрического напряжения, проходящего через катушку и резистор с помощью коллектора. Статор приводился в движение током, и поэтому вращающий момент был пропорционален произведению напряжения и силы тока. Тормозной момент обеспечивался постоянным электромагнитом, который воздействовал на алюминиевый диск, прикрепленный к якорю. Такой счетчик использовался преимущественно для постоянного тока. Большим недостатком моторных электросчетчиков являлся коллектор.

 

Изобретение трансформаторов

 

Во времена, когда только началось распределение электрической энергии, было так же неясно, какие системы окажутся эффективней: системы постоянного или переменного тока. но вскоре выявился один важный недостаток систем постоянного тока – напряжение никак нельзя было изменить, а, следовательно, было невозможно создавать более крупные системы.

 

В 1884 году француз Люсьен Голар (1850-188 и англичанин Джон Диксон Гиббс изобрели вторичный генератор, предшественник современного трансформатора. На практике трансформатор разработали и получили патент для компании Ганц (Ganz) в 1885 году трое венгерских инженеров – Карой Циперновский, Отто Титуц Блати и Микса Дери. В том же году Вестингхаус купил патент Голара и Гибсона, а Вильям Стэнли (1858-191 усовершенствовал дизайн. Джордж Вестингхаус (1846-191 также приобрел патенты Николя Теслы на использование переменного тока. Благодаря этому появилась принцип. возможность применения электрических систем переменного тока. Начиная с 20-го столетия, они постепенно сменили системы постоянного тока.

 

Для учета электроэнергии потребовалось решить новую задачу - измерение электроэнергии переменного тока.

 

Индукционные счетчики

 

В 1885 году итальянец Галилео Феррарис (1847-189 сделал важное открытие, что два не совпадающих по фазе поля переменного тока могут заставить вращаться сплошной ротор, такой как диск или цилиндр. В 1888 году независимо от него американец хорватского происхождения Николя Тесла (1857-194 тоже обнаружил вращающееся электрическое поле.

 

Шелленбергер также, случайно, открыл эффект вращающихся полей в 1888 году и разработал счётчик количества электричества для переменного тока. Противодействующий момент создавался винтовым механизмом. В таком счетчике отсутствовал элемент напряжения, чтобы учесть k мощности, поэтому он не подходил для работы с электродвигателями.

 

Эти открытия послужили основой для создания индукционных двигателей и открыли путь индукционным счетчикам
В 1889 году венгр Отто Титуц Блати (1860-193 , работая на завод Ганц (Ganz) в г. Будапешт, Венгрия, запатентовал свой Электрический счётчик для переменных токов (патент Германии № 52.793, патент США № 423.21 .

 

Как описывается в патенте, Этот счетчик, по существу, состоит из металлического вращающегося тела, такого как диск или цилиндр, на который действуют два магнитных поля, сдвинутые по фазе друг относительно друга. Это смещение фаз является результатом того, что одно поле создается главным током, в то время как другое поле образуется за счет катушки с большой самоиндукцией, шунтирующей те точки цепи, м. которыми измеряется потребляемая энергия. но магнитные поля не пересекаются в теле вращения, как в хорошо известном механизме Феррариса, а проходят сквозь разные его части, независимо друг от друга.

 

С таким устройством Блати удалось достичь внутреннего смещения фаз фактически ровно на 90°, поэтому счетчик отображал ватт-часы более или менее корректно. В счетчике использовался тормозной электромагнит для обеспечения широкого диапазона измерений, а также был предусмотрен циклометрический регистр. В том же году компания Ganz приступила к производству. Первые счетчики крепились на деревянной основе, делая 240 оборотов в минуту, и весили 23 кг. К 1914 году вес снизился до 2,6 кг.

 

В 1894 году Оливер Блэкбурн Шелленбергер (1860-189 разработал счетчик ватт-часов индукционного типа для компании Вестингхаус (Westinghouse). В нем катушки тока и напряжения располагались на противоположных сторонах диска, и два постоянных магнита замедляли движение этого диска. Этот счетчик тоже был большим и тяжелым, весом в 41 фунт. У него был барабанный счетный механизм.

 

В 1899 году Людвиг Гутманн, работая на фирму Сангамо (Sangamo), разработал счётчик ватт-часов активной энергии переменного тока типа A. Ротор состоял из цилиндра со спиральной прорезью, расположенного в полях катушек напряжения и тока. Диск, прикрепленный ко дну цилиндра, использовался для торможения с помощью постоянного магнита. Регулировка коэффициента мощности не была предусмотрена.

 

Дальнейшие усовершенствования
В последующие годы было достигнуто много усовершенствований: уменьшение веса и габаритов, расширение диапазона нагрузки, компенсация изменения коэффициента нагрузки, напряжения и температуры, устранение трения путем замены подпятников шарикоподшипниками, а затем двойными камнями и магнитными подшипниками, и продление срока стабильной работы за счет улучшения качественных характеристик тормозных электромагнитов и удаления масла из опоры и счетного механизма. К очередному столетию, были разработаны трехфазные индукционные счетчики, использующие две или три системы измерения, установленные на одном, двух или трех дисках.

 

Новые функциональные возможности

 

Индукционные счётчики, известные также как счетчики Феррариса, и счетчики, основанные на принципах счетчика Блати, все так же производятся в больших количествах и выполняют основную работу по учету энергии, благодаря их низкой стоимости и отличным показателям надёжности.

 

По мере распространения электричества, быстро появилась концепция многотарифного электросчетчика с локальным или дистанционным управлением, счетчика максимальной нагрузки, счётчика предварительно оплаченной электроэнергии и Максиграфа, - и все уже к началу того века.

 

Первая система контроля пульсаций была запатентована в 1899 году французом Сезаром Рене Лубери, и ее совершенствовали во множественных компаниях: Компани де Комптёр (Compagnie des Compteurs) (позднее Шлюмберже (Schlumberger)), Сименс (Siemens), АЕГ (AEG), Ландис и Гир (Landis&Gyr), Цельвегер (Zellweger) и Саутер (Sauter) и Браун Бовери (Brown Boveri), - и это перечень только некоторых из них.

 

В 1934 году компания Ландис и Гир (Landis&Gyr) разработала счетчик Тривектор, измеряющий активную и реактивную энергию и потребляемую мощность.

 

Электронные счётчики и дистанционное считывание показаний

 

Выдающийся период первоначальной разработки счетчиков подошел к концу. Как сказал Блати, продолжая свою метафору: Теперь ты бродишь сутками напролет, не натыкаясь даже на куст.

 

Электронные технологии не находили применения в учете энергии до тех пор, пока в 1970-х годах не появились первые аналоговые и цифровые интегральные микросхемы. Это можно легко понять, если задуматься об ограниченном расходе энергии в замкнутом корпусе электросчетчика и ожидаемой надёжности.

 

Новая технология дала новый толчок к развитию электрических счетчиков. Сначала были разработаны точные стационарные счетчики, главным образом использующие принцип время-импульсного умножения. Также применялись ячейки Холла, в основном для коммерческих и квартирных электросчетчиков. В 1980-х годах были разработаны гибридные счетчики, состоящие из индукционных счетчиков и электронных тарифных единиц. Эта технология использовалась относительно недолго.

 

Дистанционные измерения

 

Идея считывания показаний счетчиков на расстоянии появилась в 1960-х годах. Первоначально использовалась дистанционная импульсная передача, но постепенно вместо нее стали использовать различные протоколы и средства передачи данных.

 

В настоящее время счетчики с развитыми функциональными возможностями основываются на новейших электронных технологиях, с применением цифровой обработки сигналов, причем большинство функций предусмотрены встроенным программным обеспечением.

 

Стандарты и точность измерения

 

Необходимость в тесном сотрудничестве м. производителями и энергетическими компаниями осознана относительно рано. Первый стандарт измерений, Код C12 Американского Национального Института Стандартов (ANSI) для измерения электроэнергии, был разработан так же в 1910 году. В его предисловии сказано: При том, что этот Код, естественно, основывается на научно-технических принципах, мы осознавали большую важность коммерческой стороны измерений .

 

Первый известный стандарт измерения Международной Электротехнической Комиссии (МЭК), Издание 43, датируется 1931 годом.

 

Высокий стандарт точности – это отличительная характеристика, которую установила и продолжает сохранять измерительная индустрия. Уже в 1914 году в проспектах описываются счетчики с точностью 1.5% при диапазоне измерений от 10% и менее до 100% максимального тока. Стандарт МЭК 43:1931 устанавливает класс точности Такой уровень точности до сих пор считается удовлетворительным для большинства счетчиков, находящихся на данный момент в коммунально-бытовом применении, даже для стационарных счетчиков.

 

Взглядв будуще

 

Установка на коммерческие аспекты учета энергии и использование последних технологических достижений – вот ключ к продолжительному успеху в области измерений.

 

Благодарность за представленные материалы
Здесь невозможно перечислить все источники, из которых взят материал для данной статьи. Кое-что было почерпнуто на сайтах: http://www.wikipedia.com/, http://www.watthourmeters.com/и http://www.ruhrgasindustries.com/- Ежегодныйотчет 2003 года. Автор хотел бы поблагодарить всех коллег из измерительной индустрии, которые предоставили ценные материалы.
Об авторе: Джиезо Кмети с 1993 года является Руководителем Технического Комитета 13 Международной Электротехнической Комиссии (МЭК), а с 2000 года Президентом Ассоциации Пользователей системы управления цифровыми линиями передачи данных (DLMS). Он работает в измерительной индустрии с 1976 года, и в настоящее время является сотрудником компании ГНАРУС Инжиниринг Лтд. (GNARUS Engineering Ltd.), расположенной в Венгрии, которая предоставляет услуги в области измерений, стандартизации и управления энергопотреблением.
Оригинал статьи(в формате pdf, 249 Kb)

 

Источник: http://www.izmerenie.ru

 



ЕБРР инвестирует более полумилли. Пьющий Донецк. Экономия энергии в доме. 2.

На главную  Энергоэффективность 





1.0858
 
Яндекс.Метрика